Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rotman J.J. — An Introduction to the Theory of Groups
Rotman J.J. — An Introduction to the Theory of Groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An Introduction to the Theory of Groups

Автор: Rotman J.J.

Аннотация:

Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. This edition has been completely revised and reorganized, without however losing any of the clarity of presentation that was the hallmark of the previous editions.The first six chapters provide ample material for a first course: beginning with the basic properties of groups and homomorphisms, topics covered include Lagrange's theorem, the Noether isomorphism theorems, symmetric groups, G-sets, the Sylow theorems, finite Abelian groups, the Krull-Schmidt theorem, solvable and nilpotent groups, and the Jordan-Holder theorem.The middle portion of the book uses the Jordan-Holder theorem to organize the discussion of extensions (automorphism groups, semidirect products, the Schur-Zassenhaus lemma, Schur multipliers) and simple groups (simplicity of projective unimodular groups and, after a return to G-sets, a construction of the sporadic Mathieu groups).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 513

Добавлена в каталог: 09.12.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Subgroup, pure      325
Subgroup, regular normal      259
Subgroup, subnormal      150
Subgroup, Sylow      78
Subgroup, torsion      308
Subgroup, trivial      22
Submodule      134
Submodule, generated by X      135
Subnormal subgroup      150
Substitution, law of      10
Subword      344 413
Supersolvable group      107
Surjection      480
Suzuki, M.      198 246
Sylow p-subgroup      78
Sylow theorem      79
Symmetric bilinear form      235
Symmetric function      56
Symmetric group $S_n$      12
Symmetry group of figure I(A)      67
Symplectic basis      241
Symplectic group Sp(2m, k)      238
Syntheme      161
Tartaglia (Niccolo Fontana)      90
Tate, J.      199
Terminal instantaneous description      422
Tetrahedral group      69
Third isomorphism theorem      37
Thomas, S.      163
Thompson, J.G.      107 199 254 289
Three subgroups lemma      118
Thue, A.      430
Tietze's theorem      374
Todd, I.A.      351
Torsion group      308
Torsion subgroup      308
Torsion theorem for amalgams      404
Torsion-free      155 308
TRANSFER      194
Transgression      205
Transitive      58
Transitive extension      286
Translation      15 63 264
Transposition      3
Transvection      220 228
Transvection, elementary $B_{ij}(\lamdba)$      220
Transversal      178
TREE      372
Tree maximal      373
Triangulated polygon      397
Trivial action      172
Trivial G-set      248
Trivial path      370
Trivial subgroup      22
Turing machine      421
Turing, A.M.      420
Type, abelian group      332
Type, Steiner system      293
Ulm, H.      329
Unimodular matrix      220
Union of subcomplexes      368
Unipotent matrix      144
UNIT      13 487
Unitary group U(n, k)      238
Unitriangular group UT(n, k)      82
Unitriangular matrix      82
Universal central extension      360
Universal covering complex      383
Universal finitely related group      465
Upper central series      113
van der Waerden trick      344 390
van Kampen theorem      396
Vertices      174 366
von Dyck theorem      346
von Dyck, W.      69
Wedderburn, IM.H.      144 277
wedge      399
Weichsel, P.M.      34
Well defined      480
Well-ordering principle      482
Wielandt's proof      81
Wielandt, H.      124 163
Wilson's theorem      15
Witt, E.      297
Word      23 344
Word, boundary word      435
Word, cyclically reduced      434
Word, empty      344
Word, freely reduced      434
Word, h-special      427
Word, inverse      344
Word, positive      349
Word, reduced      344
Word, reduced, in free product      389
Word, special      431
Wreath product      172
Wreath product, base      172
Wreath product, complete      175
Wreath product, permutation version      173
Wreath product, regular      175
Wreath product, restricted      175
Yff, P.      34
Zassenhaus lemma      99
Zassenhaus, H.      39 284 289
Zelmanov, E.I.      136
Zorn's lemma      481
Пулков Михаил      see Navel Morris
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте