Авторизация
Поиск по указателям
Rotman J.J. — An Introduction to the Theory of Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: An Introduction to the Theory of Groups
Автор: Rotman J.J.
Аннотация: Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. This edition has been completely revised and reorganized, without however losing any of the clarity of presentation that was the hallmark of the previous editions.The first six chapters provide ample material for a first course: beginning with the basic properties of groups and homomorphisms, topics covered include Lagrange's theorem, the Noether isomorphism theorems, symmetric groups, G-sets, the Sylow theorems, finite Abelian groups, the Krull-Schmidt theorem, solvable and nilpotent groups, and the Jordan-Holder theorem.The middle portion of the book uses the Jordan-Holder theorem to organize the discussion of extensions (automorphism groups, semidirect products, the Schur-Zassenhaus lemma, Schur multipliers) and simple groups (simplicity of projective unimodular groups and, after a return to G-sets, a construction of the sporadic Mathieu groups).
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1995
Количество страниц: 513
Добавлена в каталог: 09.12.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Finitely related = finitely presented 400
First cohomology group 212
First isomorphism theorem 35
Fitting subgroup 118
Fitting's lemma, groups 147
Fitting's lemma, Q-groups 153
Fixed element of G-set 248
fixes 3
Four group = 4-group V 15
Frattini argument 81
Frattini subgroup 122
Frattini theorem 123
Free Abelian group 312
Free group 343
Free product 388
Free product with amalgamated subgroup = amalgam 401
Free semigroup 349
Freely reduced word 434
Freiheitsatz 449
Fridman, A.A. 450
Frobenius complement 254
Frobenius group 254
Frobenius kernel 252
Frobenius, G. 58 132 199
Fuchs, L. 334
Full subcomplex 367
Fully invariant subgroup 108
Function 479
Functor, contravariant 336
Functor, covariant 335
Functor, left exact 336
Fundamental group 370
Fundamental Theorem Arithmetic 101 490
Fundamental Theorem Combinatorial Group Theory 436
Fundamental Theorem Finite Abelian Groups 132
Fundamental Theorem Finitely Generated Abelian Groups 319
Fundamental Theorem Finitely Generated Modules 142
Fundamental Theorem Projective Geometry 277
G-invariant equivalence relation 257
G-isomorphism 260
G-map 260
G-set 55
G-set, block 256
G-set, doubly transitive 250
G-set, faithful 248
G-set, imprimitive 256
G-set, isomorphism 282
G-set, k-transitive 250
G-set, multiply transitive 250
G-set, primitive 256
G-set, rank 249
G-set, regular 252
G-set, right 55
G-set, sharply k-transitive 251
G-set, trivial 248
Galois field GF(q) 218
Galois group 93
Galois theorem 96
Galois, E. 1 493
Gaschiitz theorem 191
Gaschiitz, W. 123
GCD 487
General linear group GL(n, k) 13 219
Generalized associativity 11
Generalized quaternions 87
Generates 22
Generators and relations, abelian groups 314
Generators and relations, groups 345
Godel image of presentation 465
Godel number 423
Graph 174
Graph, directed 356
Green, l.A. 366
Group 12
Group of motions 64
Group of units 13
Group, 284
Group, 288
Group, 289
Group, 290
Group, 291
Group, 292
Group, abelian 13
Group, affine Aff(n, k) 264
Group, affme group of the plane 71
Group, alternating 23
Group, automorphism group 156
Group, balanced 365
Group, binary tetrahedral 350
Group, braid 347
Group, characteristically simple 106
Group, circle 18
Group, classical 239
Group, complete 158
Group, cyclic 21
Group, dicyclic 351
Group, dihedral D 2n 68
Group, divisible 320
Group, elementary abelian p- 42
Group, extra-special 124
Group, finitely generated 314
Group, finitely related 400
Group, four group = 4-group V 15
Group, free 343
Group, free abelian 312
Group, fundamental 370
Group, Galois 93
Group, general linear GL(n, k) 13
Group, generalized quaternions 87
Group, hamiltonian 87
Group, holomorph 164
Group, icosahedral 69
Group, indecomposable 145
Group, infinite alternating 51
Group, infinite dihedral 391
Group, integers mod 13
Group, modular 391
Group, nilpotent 115
Group, octahedral 69
Group, operator 151
Group, orthogonal 64
Group, orthogonal O(n, k) 239
Group, p-group 73
Group, p-primary 126
Group, perfect 263 358
Group, periodic 155
Group, projective unimodular PSL(n, k) 223
Group, quaternions Q 83
Group, quotient 32
Group, reduced abelian 322
Group, rotation 65
Group, simple 39
Group, solvable 97
Group, special linear SL(n, k) 23
Group, supersolvable 107
Group, symmetric 12
Group, symmetry group of figure 67
Group, symplectic Sp(2m, k) 238
Group, T (order 12) 84
Group, tetrahedral 69
Group, torsion 308
Group, torsion-free 155 308
Group, unitary U(n, k) 238
Group, unitriangular UT(n, k) 82
Groupoid 370
Gruen, O. 199
Gruenberg lemma 214
Gruenberg — Wehrfritz 215
Grushko theorem 393
h-special word 427
Hall subgroup 110
Hall theorem 108 110
Hall — Higman theorem 136
Hall, M. 387
Hall, P. 25 116 166
Hamilton, W.R. 69
Hamiltonian group 87
Height 332
Height, sequence 332
Hermitian form 235
Higher centers , 113
Higher commutator subgroups 104
Higman theorem 451
Higman, G. 86 136 407
Higman, Neumann, and Neumann theorem 404 405
Hirshon R. 150
HNN extension 407 411
Hoelder theorem 160 197
Hoelder, O. 101 154
Holomorph 164
Homogeneous coordinates 273
Homomorphism 16
Homomorphism, crossed 211
Homotopic 369
Hopf's formula 358
Humphreys, J.E. 391
Hyperbolic plane 240
Hyperplane 66 228
Icosahedral group 69
Idempotent endomorphism 144
Identity element 14
Identity function 480
Image = im 22
Imbedding 23
Imbedding free product 388
Imprimitive G-set 256
Imprimitive system 257
Inclusion function 480
Indecomposable group 145
Independence in abelian group 127 310
INDEX 25
Infinite alternating group 51
Infinite dihedral group 391
Injection 480
Injective property 320
Inner automorphism 156
Inner automorphism group Inn(G) 156
Inner product, matrix 235
Inner product, space 235
Instantaneous description 421
Instantaneous description, terminal 422
Integers mod 13
Intersection of subcomplexes 368
Invariant factors, abelian group 129
Invariant factors, matrix 139
Invariant subspace 135
Inverse element 14
Inverse function 480
Inverse image of subcomplex 377
Inverse word 344
Involution 68
Involves 413
Isometry 237
Isomorphism, complexes 371
Isomorphism, field 93
Isomorphism, G-sets 282
Isomorphism, groups 16
Ivanov, S. 136
Iwasawa criterion 263
Jacobi identity 118
James, R. 86
Johnson, D.L. 350
Jonsson, R 334
Jordan — Dickson theorem 232
Jordan — Hoelder theorem, -groups 152
Jordan — Hoelder theorem, groups 100
Jordan — Moore theorem 225
Jordan, C. 101 286 289
Jordan, C., block 139
Jordan, C., canonical form 141
Jordan, C., decompositions 144
Juxtaposition 344
k-transitive 250
Kaloujnine, L. 176 187
Kaplansky, I. 19 330
Kernel, derivation 213
Kernel, group homomorphism 22
Kernel, ring homomorphism 485
Kernel, semigroup homomorphism 350
Klein, F. 72
Kostrikin, A.L. 136
Kronecker, L. 128
Kronecker, L., delta 498
Krull — Schmidt theorem, -groups 153
Krull — Schmidt theorem, groups 149
Kulikov theorem 327
Kulikov, L.J. 330
Kurosh theorem 392
Kuznetsov, A.V. 466
Labeled directed polygon 433
Lagrange's theorem 26
Lagrange, J.-L. 1 57
Lam — Leep 162 285
Lam, C. 294
Landau, E. 77
Latin square 18
Least criminal 111
Left exact functor 336
Length, cycle 3
Length, normal series 97
Length, path 368
Length, word 418
Levi, F. 383
Lifting extension 178
Lifting path 378
Linear fractional transformation 281
Linear functional 229
Lodovici Ferrari 90
Lower central series 113
Lyndon, R.C. 433
Mac Lane, S. 358
Magnus, W. 449
Mann, A. 74
Mann, H.B. 31
Markov property 468
Markov — Post Theorem 428
Mathieu groups, 284
Mathieu groups, 288
Mathieu groups, 289
Mathieu groups, 290
Mathieu groups, 291
Mathieu groups, 292
Matrix of linear transformation, relative to ordered basis 137
Maximal divisible subgroup 321
Maximal normal subgroup 39
Maximal tree 373
McCormick, G. 200
McIver, A. 86
McKay, J.H. 74.
McLain, D.H. 115 176
Miller, C.F., III 430 467
Miller, G.A. 292
Minimal exponent 202
Minimal generating set 124
Minimal normal subgroup 105
Minimum polynomial 139
Modular group 391
Modular law 37
Module 134
Monomial matrix 46 177
Реклама