|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Weyl, H.
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Âàéíáåðã Ñ. — Êâàíòîâàÿ òåîðèÿ ïîëÿ. Òîì 1. Îñíîâû | 56, 503 | ×åáîòàðåâ Í.Ã. — Òåîðèÿ Ãàëóà | 123, 128, 139 | Engel A. — Problem-Solving Strategies | 71 | Áëÿøêå Â. — Äèôôåðåíöèàëüíàÿ ãåîìåòðèÿ è ãåîìåòðè÷åñêèå îñíîâû òåîðèè îòíîñèòåëüíîñòè Ýéíøòåéíà (òîì 1) | 217, 221 | Ñàìêî Ñ.Ã., Êèëáàñ À.À., Ìàðè÷åâ Î.È. — Èíòåãðàëû è ïðîèçâîäíûå äðîáíîãî ïîðÿäêà è íåêîòîðûå èõ ïðèëîæåíèÿ. | 13, 14, 76, 131, 321, 665 | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 94, 144 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1426, 1427, 1655 | Einstein A. — Grundzuege der relativitaetstheorie | 70, 73, 93, 97 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 448 | Watson G.N. — Treatise on the theory of Bessel functions | 189, 454 | Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 745 | Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 94, 141, 143, 163, 175, 201 | Olver P.J. — Equivalence, Invariants and Symmetry | 31, 75, 80, 82, 83, 345, 393, [222—225] | Cvitanovic P. — Group theory (Lie and other) | 129, 135 | Wedderburn J.H.M. — Lectures on Matrices | 86, 170 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 213, 214, 282, 283, 311, 334, 353, 354, 375 | Nikolskii N.K. — Treatise on the Shift Operator: Spectral Function Theory | 364 | Watson G.N. — Treatise on the Theory of Bessel Functions | 189, 454 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1426, 1427, 1655 | Springer G. — Introduction to Riemann Surfaces | 199 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 37, 60, 114, 153, 154, 155, 323, 366, 548 | Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 4.2, 6.6 | Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 201, 273 | Melrose R. — The Atiyah-Singer index theorem (part 3) | 221 | Alekseevskij D.V., Vinberg E.B., Solodovnikov A.S. — Geometry of Spaces of Constant Curvature | 104, 153 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 1 | Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | 211, 279, 280, 281, 286, 333, 337 | Bellman R. — Methods of nonlinear analysis (Vol. 1) | 176 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 498 | Ewing W.M., Jardetzky W.S., Press F. — Elastic waves in layered media | 13, 14, 96, 104, 115 | Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 61, 179 | Torretti R. — Relativity and Geometry | 4, 176, 178, 188, 189, 190, 191, 193, 194, 282, 284, 293, 313, 318, 324, 326, 327, 328, 330, 332, 368, 377, 378 | Steele J.M. — Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities | 206, 288 | Lam T.Y. — A first course in noncommutative ring theory | 7, 32 | Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 167 | Coxeter H.S.M., Moser W.O.J. — Generators and Relations for Discrete Groups | 33, 34, 135 | Hirzebruch F. — Topological Methods in Algebraic Geometry | 4, 164 | Shafarevich I.R., Danilov V.I., Iskovskih V.A. — Algebraic Geometry II : Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences) | 234 | Parshin A.N., Shafarevich I.R. — Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory | 92, 179, 250, 255 | Masujima M. — Path integral quantization and stochastic quantization | 53, 169, 170 | Hensley D. — Continued Fractions | 172 | Tanigawa Y. — Number Theory: Tradition and Modernization | 187 | Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures | 125 | Alaca S., Williams K.S. — Introductory Algebraic Number Theory | 73 | van der Waerden B.L. — Sources of Quantum Mechanics, Vol. 5 | 53—56, 59 | Jackson D. — Fourier Series and Orthogonal Polynomials | 183, 189, 230 | Finch S.R. — Mathematical constants | 196 | Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 326, 532 [We] | Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 722 [77] | Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 14, 32 | Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 211 | Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 352 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 11—1 | Gardiner A. — Infinite Processes: Background to Analysis | 159n, 254 | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 4, 32 | Coxeter H.S.M. — Introduction to Geometry | 29, 31, 69, 96—97, 169, 212, 263, 270, 278, 280, 326 | Ito K. — Encyclopedic Dictionary of Mathematics | 448 | Eddington A. — The Expanding Universe | 34, 139 | Jauch J.M. — Foundations of quantum mechanics | 135, 151 | Bellman R. — Stability Theory of Differential Equations | 63 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | [Wey 81], 17, 40 | Yam T.Y. — Lectures on Modules and Rings | 45, 309, 318 | von Neumann John, Morgenstern Oscar — Theory of games and economic behavior | 76, 128, 256 | Patterson S.J. — An introduction to the theory of the Riemann zeta-function | 102 | Bellman R. — Introduction to Matrix Analysis | 102, 119, 238 | Ayoub R. — An Introduction to the Analytic Theory of Numbers | 211, 222 | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 528 | Stedman G.E. — Diagram Techniques in Group Theory | 109, 150 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 5.1 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-11-1 | Ñõîóòåí È.À., Ñòðîéê Ä.Äæ. — Ââåäåíèå â íîâûå ìåòîäû äèôôåðåíöèàëüíîé ãåîìåòðèè. Òîì 1: Àëãåáðà è ó÷åíèå î ïåðåíåñåíèè | 16, 45, 47, 76, 79, 88, 142 | Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 352 | Beckenbach E.F. (editor), Polya G., Lehmer D.H. and others — Applied combinatorial mathematics | 3, 367, 417, 536, 562 | Guggenheimer H.W. — Differential Geometry | 334, 337 | Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 86 | Aczel J. — Lectures on functional equations and their applications | 214, 349, 407, 409, 419 | Tricomi F.G. — Integral equations | 233 | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 12, 43. 375 | Feller W. — Introduction to probability theory and its applications (Volume II) | 268 | Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 97, 98 | Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 229, 243 | Êóðîø À.Ã. (ðåä.) — Àëãåáðàè÷åñêèé ðåôåðàòèâíûé ñáîðíèê çà 1941-1946 ãã. Âûïóñê 3. Îáîáùåíèÿ ãðóïï, êîëåö è ñòðóêòóð. Òîïîëîãè÷åñêàÿ àëãåáðà, ãðóïïû è àëãåáðû Ëè. Àëãåáðà àíàëèçà. Êíèãè | 744, 745, 818 | Bethe H.A., Salpeter E.E. — Quantum Mechanics of One-and-Two-Electron Atoms | 36 | Eddington A.S. — Philosophy of Physical Science | 28 | Barwise J. (ed.) — Handbook of Mathematical Logic | 217, 822, 823, 825, 926, 975 | Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 2 | Peierls R. — Bird of passage: recollections of a physicist | 53 | Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 211 | Mehta M.L. — Random Matrices | 38, 43 | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 33, 34, 100, 102, 103, 105, 184, 255 | Wawrzynczyk A. — Group representations and special functions | 173, 207 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | ix, 4, 52—53 | Alexits G., Sneddon I.N. — Convergence Problems of Orthogonal Series | 82, 177 | Patterson S.J. — An Introduction to the Theory of the Riemann Zeta-Function | 102 | Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics | 38, 246 | Rose M.E. — Relativistic Electron Theory | 258, 272 | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 215, 333, 435 | Grosche C., Steiner F. — Handbook of Feynman path integrals | [919], 151 | Kurosh A. — Higher Algebra | 415 | Rose M.E. — Elementary theory of angular momentum | 145 | Gentzen G. — The collected papers of Gerhard Gentzen | vii, 3, 21, 24, 165, 224, 234, 235, 244, 245, 249, 314—317 | Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 20, 21, 89, 149 | Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 74 | Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 137 | Smithies F., Hall P. (ed.) — INTEGRAL EQUATIONS (No. 49) | 58 | Aleksandrov A.D., Kolmogorov A.N. — Mathematics. It's content, methods, and meaning (Vol. 3) | 342 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 172, 366, 506, 553, 579 | Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 153, 170, 182—184, 188—192, 195, 277 | Barut A.O., Raczka R. — Theory of Group Representations and Applications | 3, 23, 46, 51, 71, 167, 172, 175, 204, 231, 236, 237, 238, 292, 313, 426, 581, 588, 634 | Rao M.M., Swift R.J. — Probability Theory With Applications | 95 | Onishchik A.L. (ed.), Vinberg E.B. (ed.) — Lie Groups and Lie Algebras | 5, 161, 177, 178, 215 | Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 141(12), 142 | Monastyrsky M. — Modern mathematics in the light of the Fields medals | 14, 17, 62, 111 | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 72, 80, 153, 154, 201, 245, 246 | Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 65, 127, 156 | Bellman R.E., Dreyfus S.E. — Applied Dynamic Programming | 179 | Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 166, 211 | Sneddon I.N. — Mixed boundary value problems in potential theory | 47 | Van Der Waerden B.L. — Sources of Quantum Mechanics | 53—56, 59 | Mott N.F., Sneddon I.N. — Wave Mechanics and Its Applications | 127, 290, 291 | Thomas T. Y. — The elementary theory of tensors with applications to geometry and mechanics. | 90 | Mason W.P. (ed.) — Physical Acoustics. Principles and Methods (volume 10) | 5, 60 | Kneale W. — Probability and Induction | 230n. | Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 120, 179 | Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 196, 482 | Onishchik A.L., Vinberg E.B. (eds.) — Lie Groups and Lie Algebras (volume 2) | 6, 161, 177, 178, 215 | Harnwell G.P., Livingood J.J. — Experimental Atomic Physics | 243 | Synge J.L. — Relativity: The general theory | X, 265, 310, 354, 368 | Hille E. — Methods in classical and functional analysis | 342 | Dym H., McKean H.P. — Fourier Series and Integrals | 4, 54, 117, 203, 227, 228 | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 5, 6, 38 | Prasolov V.V., Tikhomirov V.M. — Geometry | 1, 6, 36, 38, 199 | Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | xiv, 73 n, 231 n, 305 n | Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 65, 127, 156 | Dunford N., Schwartz J.T. — Linear operators. Part III. Spectral operators | vi, xiv, 2490 | Springer G. — Introduction to Riemann Surfaces | 199 | Jauch J.M. — Foundations Of Quantum Mechanics | 135, 151 | Sommerfeld A., Ramberg Edward G. (translator) — Electrodynamics. Lectures on theoretical physics, Vol. III | 302, 321 | Porteous I.R. — Clifford Algebras and the Classical Groups | 79, 243, 288 | Michael Baer, Gert D.Billing — Advances in Chemical Physics, The Role of Degenerate States in Chemistry, Vol. 124 | 204(103), 276 | Schneider H. (ed.) — Recent advances in matrix theory | 130, 135 | Peajcariaac J.E., Tong Y.L. — Convex functions, partial orderings, and statistical applications | 321, 455 | Niven I. — Diophantine Approximations | 44 | Beckenbach E.F., Bellman R. — Inequalities | 75, 89, 91, 101, 115, 119, 123, 126, 128, 129, 131, 178, 187 | Shick P.L. — Topology: Point-set and geometric | 241 | Donoghue W.F. — Distributions and Fourier transforms | 127, 198 | Hadley G. — Linear programming | 417 | Wiedemann H. — Particle accelerator physics II | 313 | Beckenbach E.F. (ed.) — Applied Combinatorial Mathematics | 3, 367, 417, 536, 562 | Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics | 459(2), 646 | Gries D. — A Logical Approach to Discrete Math | 131 | Prigogine I., Rice S.A. — Advances in CHEMICAL PHYSICS. Volume XC | 123(67), 178(67), 355 | Chandler B., Magnus W. — The history of combinatorial group theory: a case study in the history of ideas | 31, 196, 197 | Boerner H. — Representations of Groups | VII, VIII, 23, 95, 128, 145, 216, 217, 246, 275, 301, 316, 318, 320 | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | 372, 610, 612, 725, 940, 1079, 1145, 1148, 1149, 1273, 1301, 1306, 1351, 1355, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591 | Kallen G. — Elementary particle physics | 366 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 498 | Curry H.B. — Foundations of Mathematical Logic | 20, 26 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 441 | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 362 | Moriyasu K. — An Elementary Primer for Gauge Theory | 158 | Anderson J.L. — Principles of Relativity Physics | 393, 447 | Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 671 | Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 157 | Suppes P.(ed.) — Handbook of Proof Theory.Studies in logic the foundations of mathematics.Volume 137. | 345, 366, 405 | Synge J.L. — Relativity: The Special Theory | 103 | Bluman G.W. — Similarity Methods for Differential Equations | 130 | Klimyk A.U., Vilenkin N.Ya. — Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions | 72, 135, 145, 146, 258 | Schouten J.A. — Tensor Analysis for Physicists | 24 | Sakurai J.J. — Modern quantum mechanics | 100 | Miller K.S., Ross B. — An Introduction to the Fractional Calculus and Fractional Differential Equations | 13, 15 | Lee A. — Mathematics Applied to Continuum Mechanics | 128 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 4, 54, 117, 203, 227, 228 | Davis P., Hersh R. — The Mathematical Experience | 60, 108, 112, 230 | Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 201, 273 | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 372, 610, 612, 725, 940, 1079, 1145, 1148, 1149, 1273, 1301, 1306, 1351, 1355, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591 | Bell E.T. — Mathematics: Queen and Servant of Science | xix, 34, 101, 394, 414—415 | Yano K. — Integral Formulas in Riemannian Geometry | 1, 18, 20, 21, 32, 148 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-11-1 | Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 153 | Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 2, 8, 10, 53, 95, 223 | Santalo L., Kac M. — Integral geometry and geometric probability | 276, 343 | Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography | 128 | Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 161, 162 | Sommerfeld A. — Partial Differential Equations in Physics | 166, 211 | Curry H.B. — Foundations of mathematical logic | 20, 26 | Hargittai M., Hargittai I. — Candid Science IV: Conversations With Famous Physicists | 10, 19, 86, 149, 518 | Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35) | 234 | Ëóêîìñêàÿ À.Ì. — Îñíîâíûå èíîñòðàííûå áèáëèîãðàôè÷åñêèå èñòî÷íèêè ïî ìàòåìàòèêå è ìåõàíèêå 1931-1957 | 260, 300, 329 | Moeller C. — The theory of relativity | 157, 309, 333, 368 | Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 75, 89, 91, 101, 115, 119, 123, 126, 128, 129, 131, 178, 187 | Steen S. — Mathematical Logic | 201, 273 | Alt F.L., Rubinoff M. — Advances in computers.Volume 3 | 202, 273 |
|
|