Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Torretti R. — Relativity and Geometry
Torretti R. — Relativity and Geometry

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Relativity and Geometry

Автор: Torretti R.

Аннотация:

High-level study examines Einstein's electrodynamics of moving bodies, Minkowski spacetime, gravitational geometry and other topics.
High-level study discusses Newtonian principles and 19th-century views on electrodynamics and the aether, covers Einstein's electrodynamics of moving bodies, Minkowski geometry and other topics. A rich exposition of the elements of the Special and General Theory of Relativity.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 395

Добавлена в каталог: 21.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
A priori knowledge of physical world      232 233
Abraham, M.      138 139—140 143 149 308 309 312 316 351
Abraham, R.      305 351
Acausal set in causal space      124
Achronal set in causal space      124
Action of a group on a set      26 288
Action of a group on a set, effective      26
Action of a group on a set, free      263
Action of a group on a set, left      26;
Action of a group on a set, right      288 note 13
Action of a group on a set, transitive      26
Action-at-a-distance, delayed      133
Action-at-a-distance, instantaneous      130 131
Action-at-a-distance, Newton’s view      33
Aether      37 38 39—47 117 290 291 300
Aether drag, Fresnel      41—42 70
Aether drag, Hertz      40
Aether drag, Lorcntz      42 43 291
Aether drag, Michelson      291 note 15
Aether drag, Stokes      41
Affine manifold      187
Affine metric space      91
Affine parameter      278
Affine space      72 91 296
Affine structure of a manifold      188
Airy, G.B.      42 293 352
Alembert, J.d’      288
Alexandrov topology      124 308
Alexandrov, A.D.      127 309 352
Alley, CO.      296 352
Alpha body (Neumann)      16 17 286
Alvager, T.      293 352
Ampere, A.M.      35 289 352
Anderson, J.L.      296 352
Andromeda galaxy (M 31)      203 332 note
Angel, R.B.      vi 284 344 352
Angle measure in proper Riemannian manifold      327 note 19
Arago, F.      41 352
Archibald, R.C      288 352
Archimedes      1
Archytas of Tarentum      1
Aristotle      9 11 12 220 248 249 285 286 338 346 352
Arnowitt, R.      325 332 352
Arzelies, H.      293 295 298 315 338 345 352
Atlas      257
Atlas, Galilei      24 figure
Atlas, Lorentz      89
Augustine, Saint      346 352
Baade, W.H.W.      332
Babcock, G.C      293 352
Bacry, H.      76 352
Bailey.J.      296 352
Bargmann, S.      340
Barnett, L.      343
Bartok, Bela      203
Bateman, H.      297 352
Bauer, H.      319 352
Beauregard, L.A.      340 352
Bentley, Bishop      33 289
Benz, W.      297 352
Bergman, T.G.      293 352
Bergmann, P.G.      293 307 308 324 352
Berkson, W.      289 293 352
Bern, V.      79 80 82 297 298 352
Bernays, P.      169
Besso, M.      166 167 168 316 320 321 328 359
Bianchi identities      272 280 318 322
Bianchi, L.      322
Bilaniuk, O.M.P.      296 353
Birkhoff, Garrett      284 368
BirkhoiT, George David      335 353
Bolyai, J.      333 340
Bondi, H.      5 284 325 353 377
Boost      61
Bork, A.M.      288 353
Born, M.      2 147 181 195 293 296 300 314 328 353 359 369
Boscovich, R.J.      289 353
Bosshardt, B.      217 353
Bouncing light signal      53
Bouncing signal      223
Bowman, P.A.      338 353 359
Brace, D.B.      85 293 353
Bradley, J.      40 41 291 353
Braginsky, V.B.      310 325 353 355
Brans, C.H.      200 331 353
Brecher, K.      293 353
Bridgman, P.W.      193 298 338 353
Brill, D.R.      330 353 354
Brouwer, L.E.J.      326 353
Bruno.G.      204 333
Bundle      263
Bunge.M.      vi 293 306 353 363
Burke, W.L.      325 353
C      36 37 56 82 89 120f. 140 141 289 note
Callaway, J.      330 353
Capek, M.      285 286 353
Carnap, R.      340 354
Cartan, E      21 101 176 189 191 266 318 327 354
Cartan, H.      287 354
Carter, B.      335 354
cartesian      14
Cartesian coordinates      14
Cauchy completion of metric space      211 335
Cauchy sequence      211
Cauchy surface      124 215 332
Cauchy, A.L.      335
Causal automorphism      127
Causal future of worldpoint      121
Causal future of worldpoint, of set of worldpoints      121
Causal past      121
Causal space      123
Causal space, stably      254 337
Causal space, strong      125 253
Causal space, topological      124
Causal structure of relativistic spacetime      192 247 252—255
Causal vector      124
Causality and spacetime structure      123 255
Causality and time order      220
Causality, formal vs.efficient      255
Causally connectible      121
Causally precedes      121 192
Cayley, A.      341
Chart      257
Chevalley, C      295 354
Choquet-Bruhat, Y.      313 325 332 348 349 354
Christoflel, E.B.      2 143 315 354
Chronological future      121
Chronological neighbourhood      124
Chronological past      121
Chronologically precedes      121 192
Clarke, C.J.S.      284 325 326 336 337 344 348 354 376
Clarke, S.      285
Clemence, G.M.      322 354
clock      12 13 52 96
Clock Hypothesis      96 327
Clock paradox      68 figure 96 296
Clock synchronization, by clock transport      226 figure 338 note
Clock synchronization, by light signals      53 figure 223
Clock synchronization, determined by Reciprocity Principle      298 note 4
Clock synchronization, Eddington on      226
Clock synchronization, Einstein on      53 figure
Clock synchronization, Reichenbach on      223 figure
Clock synchronization, standard vs.non-standard      226
Clock synchronization, symmetry of      294 note 7
Clock synchronization, Thomson on      52 294
Clock synchronization, transitivity of      294 note 7
Coffa, J.A.      vi 340 354
Cohen, J.M.      330 353 354
Comoving coordinates      329 note 24
Compact topological space      329 note 22
Compass of inertia      200 331
Conceptual change      108 341
Conformal metrics      192
Conformal structure of a manifold      192
Conformally flat metric      313 note 30
Congruence of curves      28
Congruence path-dependent in Weyl’s “pure infinitesimal geometry”      190
Conjugate vector (in Minkowski geometry)      125
Connected topological space      288 note 12 314
Connection form      271
Connection in a principal fibre bundle      270 (see also “Linear connection”)
Contraction of a tensor      349 note 5
Conventionalism      87 231 232
Conventionalism, geometric, Grunbaum      242 figures 344—346
Coordinate system      see “Chart”
Coordinate transformation      15 257
Coordinate transformation, Galilei      24—25
Coordinate transformation, Galilei, purely kinematic (pk)      29
Coordinate transformation, Lorentz      56
Coordinate transformation, Lorentz, homogeneous      72
Coordinate transformation, Lorentz, mathematical vs.physical sense      72
Coordinate transformation, Lorentz, non-kinematic (nk)      57
Coordinate transformation, Lorentz, orthochronous      72
Coordinate transformation, Lorentz, proper      72
Coordinate transformation, Lorentz, purely kinematic (pk)      61 figure
Coordinate transformation, Mobius      76
Coordinates, metrical meaning in Newtonian mechanics and Special Relativity      14 15 51 53 54 56
Coordinates, no immediate metrical meaning if gravity is present      147 149 151 154
Coordination of concepts with reality (Reichenbach)      233 234
Coordinative definition (Reichenbach)      234 342 note
Copernicus, N.      201
Corinaldesi, E.      324 355
Corresponding States, Lorentz’s Theorem of      44 figure 46 292
Cosmological constant      198 f 205
Cosmological Principle (Milne)      333 note 24
Cosmological redshift (in Friedmann universe)      207 figure 334
Cosmology, relativistic      197—199 202—210 328—338
Cotangent bundle      99
Cotangent space      260
Cotangent vector      see “Covector”
Coulomb, C.A.      35
Covariance      see “General covariance”
Covariant derivative      101 155 274—275
Covariant derivative, absolute      275
Covariant derivative, exterior      270
Covariant differential      275
Covariant differentiation commutative only in flat manifold      317 note 15
Covector      99 260
Covering space      346 note 12
Critical point      304 note 6
Cross-section, of a bundle      263
Cross-section, parallel      271
Cullwick, E.G.      307 355
Cunningham, E.      297 355
Curvature form of a connection      271
Curvature of plane curve      313 note 3
Curvature scalar      210 280 281 318
Curvature, analogy of Gaussian curvature with gravity      146 figure
Curvature, associated with linear connection      275 277
Curvature, associated with Riemannian metric      144 figure
Curvature, constant      145 238 333
Curvature, Gaussian      144 313
Curvature, sectional      145
Curve      6 94
Curve, causal      124 127
Curve, chronological      124
Curve, closed      124
Curve, closed causal      253
Curve, energy-critical      94
Curve, horismotical      124
Curve, length-critical      95
Curve, reparametrization of      259
Curve, tangent to      259
Dautcourt, G.      327 355
Davies, P.C.W.      325 355
de Sitter’s empty universe      199 203 328 note 329
Dehnen, H.      331 364
Descartes, R.      1 9 10 22 37 285 355
Deser, S.      325 332 352
Determinism, chronogeometrical      249—251
Determinism, logical      249
Dicke, R.H.      135 310 316 322 331 353 355 373
Diffeomorphism      258
Differentiability, order of physical significance      348 note 4
Differential      260 261
Differential form      99 266—268
Dingier, H.      287 343 355
Dingle, H.      296
Diocles      1
Dirac, P.A.M.      182 344 355
Direct sum of vector spaces      297 note 5
Distance      303 note 1
Distance in proper Riemannian manifold      95
Dixon, W.G.      121 186 307 323 324 355
Dodson, CT.J.      344 355
Domain of dependence      124
Doppler effect      70 300
Douglass, D.H.      325 355
Drag-along of covariant tensor field by diffeomorphism      165
Drake, S.      288 361
Droste, J.      184 322 355
Dutta, M.      297 355
D’Agostino, S.      289 355
Eardley, D M.      219 356
Earman, J.      21 283 296 311 316 320 322 323 339 344 356
Eddington, A.S.’      176 190 203 226 284 293 322 324 327 332 338 355 356
Edelen, D.      316 356
Ehlers, J.      4 180 193 310 323 324 325 327 348 356 363
Ehrenfest paradox      314 note 22 315
Ehrenfest, P.      166 167 168 314 315 320 356
Ehresmann, Ch.      266 356
Einstein field equations of the gravitational field      159 160 173 281
Einstein field equations of the gravitational field, singled out among alternatives      160 318 323 332
Einstein field equations of the gravitational field, weak-field or linearized approximation      325 note 35
Einstein simultaneous      54
Einstein spherical static universe      198 204 329
Einstein summation convention      89
Einstein tensor, modified      160 318
Einstein tensor, proper      160 323
Einstein tensor, vanishing of covariant divergence      160 318
Einstein time      54
Einstein, A.      vi x 2 3 4 5 7 12 13 20 38 42 47 48—71 83 84 85 86 87 105 108—113 122 130 133 134—139 140 142 143 146—175 176 177 178 181 184 189 190 191 195—199 200 201—202 203 204 220 225 231 233 237 238 241 243 247 256 257 281 283 284 287 292—296 303 306—307 309—333 338 340 342 343 345 354 357—359 368
Eisenhart, L.P.      313 359
Ekhenwald, A.      291 356
Electromagnetic conception of matter      290 note 18 302 322
Electromagnetic energy tensor      117 172
Electromagnetic field tensor      115 307
Electromagnetic stress tensor      117
Electromagnetic unit of charge      289 note 4
Electrostatic unit of charge      289 note 4
Ellis, B.      338 340 359
Ellis, G.F.R.      253 254 284 314 325 335 336 337 339 347 348 359 363 376
Embedding of a manifold into another      326 note 7
Embedding of a manifold into another, isometric      326 note 7
Emden, R.      316
Energy of moving massive particle in Special Relativity      70 figure
Energy tensor      119 308 note
Energy tensor, Conservation law      120
Energy tensor, e.t. of dust      172
Energy tensor, energy tensor not a satisfactory representation of matter      324 note 11
Energy tensor, matching law in General Relativity      158
Energy tensor, of perfect fluid      120 331
Energy tensor, plays same role as gravitational energy matrix in Einstein field eqns      174 175
Energy tensor, vanishing of covariant divergence implied by Einstein field eqns      160 174 175
Energy tensor, vanishing of covariant divergence not a “pure conservation principle”      158
Energy, kinetic (Special Relativity)      111 113
Engel, F.      297 333 367
Eotvos, R.      143 310 359
EP (Equivalence Principle)      135 (see also under “Principle of Equivalence”)
Epstein, P.S.      296 360
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте