Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Torretti R. — Relativity and Geometry
Torretti R. — Relativity and Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Relativity and Geometry

Автор: Torretti R.

Аннотация:

High-level study examines Einstein's electrodynamics of moving bodies, Minkowski spacetime, gravitational geometry and other topics.
High-level study discusses Newtonian principles and 19th-century views on electrodynamics and the aether, covers Einstein's electrodynamics of moving bodies, Minkowski geometry and other topics. A rich exposition of the elements of the Special and General Theory of Relativity.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 395

Добавлена в каталог: 21.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Law of motion in General Relativity      176 figures
Law of Motion, Geodesic      see “Geodesic Law”
Laws of Coulomb      35
Laws of Motion (Newton), First      see “Principle of Inertia””
Laws of Motion (Newton), Second      9 19 29 55 107 284
Laws of Motion (Newton), Third      9 19 43 51 55 83 107 287
Laws of physics and Relativity Principle      30 figure 54 65
Leavitt, H.      203
Lee, A.R.      298 367
Leibniz, G W.      33 167 285 367
Lemaitre, G.      204 333 367
Length contraction, relativistic      67 figure 97
Length of curve      94
Length of moving rod      296 note 1 to section 3 5
Lense, J.      200 367
Lerner, R.G      296 335 367
Levi — Civita connection      101 188 279
Levi — Civita connection, components      281
Levi-Civita, T.      143 146 176 187 188 194 319 326 367 373
Levine, M.W.      311
Levy-Leblond, J.M.      76 297 298 352 367
Lewis, G N.      2 70 112 296 367
licf (local inertial comoving frame)      115
Lichnerowicz, A.      284 305 308 367
Lie algebra      268
Lie bracket      268
Lie derivative      101 261—262 268
Lie group      268 269
Lie group, adjoint representation      269
Lie group, defined      288 note 12
Lie, S.      288 297 333 367
Lifshitz, E M.      287 293 345 366
Lift      270 349
Light      37 40—42 49 50 51 84 137 290 312
Light speed and gravitational potential      138 140
Light speed as maximum signal speed      71
Light velocity, in moving refracting medium      70 (see also “Aether drag”)
Light, aberration of      41 70 291 note 300
Light, deflection by gravity      135 138 173 311 322
Light, propagation of      312 note 13 note
Lindsay, R.B.      293 367
Line element, de Sitter empty universe      329 note 27
Line element, of arbitrary Riemannian manifold      101
Line element, of surface      313 note 4
Line element, Robertson — Walker      207
Line element, Schwarz-schild      335 note 2
Line element, static Einstein universe      329 note 24
Line of force (Faraday)      36
Linear connection      272
Linear connection, complete      278
Linear connection, incomplete      212
Linear connection, metric      279
Linear connection, symmetric or torsion-free      188 277
Linear connection, Weyl’s definition      188 (see also “Levi — Civita connection”)
Lobachevsky, N.I.      1 283 333 340
Locally Minkowskian      145 314
Lorentz chart      54 56 227 296
Lorentz chart, local      136 147
Lorentz chart, matched Lorentz charts      57 295
Lorentz force      43 113 116 323
Lorentz group      6 62 89 283 295 note 302
Lorentz group, general homogeneous      280
Lorentz group, homogeneous      6 63—65 86 295
Lorentz group, orthochronous      64
Lorentz group, proper      64
Lorentz metric      93 314
Lorentz metric, compatible with linear connection      192
Lorentz metric, topology for set of Lorentz metrics on a given 4-manifold      337 note 17
Lorentz tetrad field      102
Lorentz transformation of electromagnetic field components relative to matching charts      109
Lorentz transformation, equations for matching charts (“coordinate systems in standard position”)      61 84
Lorentz transformation, equations for non-matching charts with common origin      62
Lorentz transformation, linearity of      57 71—76 297 note 298 299
Lorentz, H.A.      3 42—47 48 70 83 84—85 86 87 131 162 176 184 291—292 294 296 301 302 306 307 309 310 319 367 368
Lovelock, D.      160 305 308 317 318 321 323 368 373
LP (Light Principle)      54 (see also under “ Principle of Constancy of Light Velocity”)
MacCallum, M.A.H.      347 368
MacCullagh, J.      290 368
Mach, E      196 197 201 202 287 292 319 320 328 368
Machian effects in Einstein’s theories of gravity      196 figure 200 328
Machian solutions to Einstein field equations      331 note 43 332
Mach’s principle      196—202 328 note 331 note
Mach’s Principle, dismissed by Einstein      201 202
Mach’s Principle, inimical to General Relativity      199—201
Mach’s Principle, opposed to Equivalence Principle      200
MacLane, S.      284 348 368
Malament, D.      vi 129 229—230 347 368
Manifold      2 72 257 348
Manifold, analytic      288 note 12
Manifold, complex      348 note 3
Manifold, flat      145
Manifold, locally Minkowskian      145
Manifold, orientable      257
Manifold, parallelizable      93 99 265
Manifold, product      258
Manifold, real n-dimensional $C^k$-differentiable      257 (see also under “Affine” “Conformal” “Projective” “Riemannian”)
Manifold-with-boundary      325 note 32
Marder, L.      296 368
Margenau, H.      293 367
Markus, L.      314 368
Marsden, J.E      305 325 351 360
Mascart, E.E.N.      293 368
Mass      9 107
Mass, inertial vs.gravitational      32 133 134 135 310 note note
Mass, longitudinal      13
Mass, proper      110
Mass, relativistic      112
Mass, transverse      113 307
Mass-energy equivalence      111 figure 306 note 308
Massey.G.J.      344 368
Matisse, Henri      203
Maximum signal speed      71 82 338
Maxwell equations      36 39 43 50 55 109 116 289 297 291 293 306 307 323 327
Maxwell, J.C.      36—38 39 49 117 130 288 289 290 293 308 368 369
McCarthy, P.J.      129 309 363
McCormmach, R.      290 291 314 369
McMullin, E      284 287 369
measured by Roemer      339 note 25
Mehlberg, H.      123 228 229 339 369
Mehra, J.      283 312 322 323 369
Meller, C.      293 295 315 345 370
Mercury’s perihelion precession      131 169 173 322
Merleau-Ponty, J.      289 294 325 369
Metric on a set (Grunbaum)      242
Metric space      303 note 1
Metric space, completion      211
Metrical amorphousness and continuity      242
Michell, J.      35
Michelson, A.A.      42 45 46 85 86 135 232 233 289 290 291 292 293 310 369
Microwave background radiation      204 255
Mie, G      138 142—143 175 195 312 313 322 369
Mignani, R.      296 372
Miller, A.I.      87 283 289 290 291 292 293 294 300 301 302 306 369
Miller, J.C      335 369
Milne, E A.      333
Minkowski metric      95
Minkowski metric, local approximation to global spacetime metric      150—152
Minkowski spacetime      90 92 95 186
Minkowski, H.      2 20 21 65 88—89 91 96 102 104 114 115 132 140 194 283 296 302—305 307—308 310 368 369
Minkowski’s world      89 303
mirf (momentary inertial rest frame)      96
Misner, C W.      215 255 284 312 317 325 330 332 335 337 344 347 352 369 370
Mittelstaedt, P.      297 306 339 363 370
Momentum, Newtonian      107
Momentum, relativistic      112
Mondrian, Piet      203
Monroe, C.J.      288
Morduch, G.E      310 312 378
More, H.      1
Morley, E W.      42 135 232 233 291 292 293 369
Mortensen, C.      320 370
Motion      8
Motion, free vs.forced      30 96 158 194
Mukherjee, T.K.      297 355
Mukunda, N.      288 302 375
Munkres, J.R.      348 370
n-ad      6 99
n-ad field      6 99
n-ad field, holonomic      262
n-ad, orthonormal      279 303
n-ads, principal bundle of      264 figure
n-ads, principal bundle of canonic form      272
Narlikar, J.V.      284 317 331 332 364 370
Nerlich, G.      244 287 320 340 344 345 370
Neumann, C G.      3 12 16—17 286 370
Newman, ET.      330 335 370
Newton, I.      1 8—34 38 50 52 108 122 130 167 191 194 196 210 220 237 240 284—289 310 311 320 327 328 332 340 370
Newton’s programme for natural philosophy      8 35
Newton’s wisdom, as judged by Einstein      328 note 8
Nicomedes      1
Noble, H.R.      293 377
Nomizu, K.      284 295 313 314 317 335 348 349 366 370
Noonan, T.W.      289 295 373
Nordstrom, G      138 140—142 143 312 370
Normal chart      278
North, J.N.      325 371
Null cone in $\mathbb{R}^4$      92 303
Null cone in Minkowski spacetime      92
Null curve      94
Null vector      92 94
Observationism, dismissed by Einstein (1933)      231
Observationism, dismissed by Einstein (1937)      331 note 39
Observationism, embraced by Einstein (1916)      328 note 4
Oersted, H.C.      35
Ohanian, H.C.      310 335 371
Ohrstrom, P.      337 371
Olbers, H.W.M.      332
Oppenheimer, J.R.      335 371
Orbit of an object under group action      295 note 14
Orthogonal (in Minkowski geometry)      91 figure
Orthonormal basis of inner product space      303 note 1
Ovchinnikova, V.V.      127 309 352
Ozswath, I.      331 371
O’Raifertaigh, L.      319 356 371
Panov, V.I.      310 353
Papapetrou, A.      323 324 355 371
Parallel cross-section      271
Parallel transport      101 187 270
Parallelism, in affine space      91
Parallelism, in principal fibre bundle      270
Parallelism, of vectors in affine manifold      187
Parallelism, path-dependent      187 f 266 270 326
Parallelizable manifold      93 99 265
PARAMETER      259
Parametric line of a coordinate function      259
Pargetter, R.      293 365
Parity      288 note 9 note
Pars, L.A.      298 299 371
Past directed causal curve      124
Past distinguishing spacetime      217
Past set      217
Path      6 94 259
Path topology      129
Pauli, W.      306 371
Peebles, P.J.E.      329 362 371
Pekar, D.      310 359
Penrose, R.      3 123 212 213 214 215 217 218 307 308 325 337 347 361 363 367 371
Penzias, A.A.      204 255 326 371
Pereira, C.      323
Permutation      24
Perrin, R.P.      296 371
Petrova, N.M.      324 371
Petzoldt, J.      314
Physical objects as geometrical objects      104
Pirani, F.A.E      4 193 202 296 319 325 327 331 343 344 353 356 371 377
pk (purely kinematic) coordinate transformation, Galilei      29
pk (purely kinematic) coordinate transformation, Lorentz      61 figure 65 295
Planck, M.      2 48 70 133 296 306 310 371 372
Poincare      283 note 4 340
Poincare group      6 62
Poincari, H.      1 2 3 83 84 85—87 114 132—133 283 288 291 292 296 300—302 303 305 310 340—341 343 350 372
Point transformation, Galilei      25
Point transformation, Lorentz      62
Poisson’s equation      33 34 133 159
Polnarev, A.G      325 362
Poston, T.      344 355
Pound, Ezra      203
Pound, R.V.      311 372
Power as inner product of velocity and relative force      113
Poynting vector      116 319
Priestley, J.      35
Principles of Chronology      82 300
Principles of Coexistence according to the Law of Interaction (Kant)      220
Principles of Conservation of 4-momentum      114
Principles of Constancy of Light Velocity (Light Principle)      49 54 55 67 84 138 293 294 3 295 311
Principles of Equivalence      19 32 134—138 151 195 287 310 311 note 3l5 316
Principles of Equivalence, allegedly generalizes Relativity Principle      134
Principles of Equivalence, but actually modifies it      136 figure
Principles of Equivalence, extended to arbitrary gravitational fields      151
Principles of Equivalence, “semi-strong”      311 note 13
Principles of Inertia      12 16 17 29 51 55
Principles of Reciprocity      79 298 note
Principles of Relativity (General)      153 195
Principles of Relativity (Newtonian)      19 30—31 39
Principles of Relativity (Special)      49 54 65 87 294 3 295 298
Principles of Relativity (Special), compared with General Relativity Principle      153 figure
Principles of Relativity (Special), modified by Equivalence Principle      136 figure
Principles of Relativity (Special), variously formulated by Poincare      83 85 301 note
Principles of Spatial Isotropy      79
Principles of Temporal Succession according to the Law of Causality (Kant)      221
Principles of Thermodynamics      49 83 “Mach’s
Projective structure of a manifold      191
Prokhovnik, S.J.      296 372
Proper time      96
Pseudo-group      316 note 6
Ptolemy      201
Pull-back      316 note 12
Putnam, H.      249 250 344 345 346 372
Pyenson, L.      vi 302 310 372
Quadratic form      303 note 1
Quinn, P.      344 372
Radar chart      194
Radar signal      53
Raine, D.J.      199 202 332 372
Raychaidhuri, A.K.      200 213 332 372
Rayleigh, Lord (J.W.Strutt)      45 85 291 292 293 372
Recami, E.      296 372
Reciprocity      79
Reichenbach      234 figures (see also under “Simultaneity”)
Reichenbach “parameter”      223—225
Reichenbach “parameter”, truly a function      225—226
Reichenbach, H.      193 222 232—241 293 308 338—343 372
Reichenbach’s Rule for the definition of simultaneity      223 224 230 338 note 339
Reinhardt, M.      202 372
Relative force      112
Relativity, general      2 152—158 194 197 200 240 241
Relativity, General, dynamic formulation      181
Relativity, Newtonian vs. Einsteinian      38
Relativity, Newtonian vs. Einsteinian, incompatible with Newtonian gravity      131
Relativity, Newtonian vs. Einsteinian, locally valid only      136 figure
Relativity, Newtonian vs. Einsteinian, Special      2 48—82 85 107—121
Relativity, Newtonian vs. Einsteinian, transmutation of its laws into laws of General Relativity      156 figure 316
Repere      6 99
Repere, mobile      6 99
Ricci tensor      7 159 170 173 175 189 280 318
Ricci tensor, components      281 (D. 4)
Ricci tensor, Einstein’s notation of      196 321
Ricci-Curbastro, G.      2 102 143 146 326 373
Riemann tensor      145 189 279 280 313 318 note
Riemann tensor, components      281 (D. 2 D.
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте