Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Torretti R. — Relativity and Geometry
Torretti R. — Relativity and Geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Relativity and Geometry

Автор: Torretti R.

Аннотация:

High-level study examines Einstein's electrodynamics of moving bodies, Minkowski spacetime, gravitational geometry and other topics.
High-level study discusses Newtonian principles and 19th-century views on electrodynamics and the aether, covers Einstein's electrodynamics of moving bodies, Minkowski geometry and other topics. A rich exposition of the elements of the Special and General Theory of Relativity.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 395

Добавлена в каталог: 21.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Erlangen Programme      2 26 34 283 note 340
Essex, L.      292 378
Euclid      1 10 283 285 343
Euler, L.      286
Event      22
Expansion of the universe      203 330
Expansion of the universe, due to spacetime geometry      207
Exponential mapping      251 278
Exterior derivative      101 267
Faraday, M.      35 36 37 38 22 289 290 360
Feenberg, E.      293 360
Feinberg, G.      296 360
Fekete, E.      310 359
Fermat, P.de      334
Fermi chart      200 319
Fermi derivative      330 note 34’
Fermi transport      201 331
Fermi, E.      319 360
Fernparallelismus      191 327
Feynman, R.P.      309
Fibre      6 288
Fibre bundle, associated      264
Fibre bundle, principal      263
Field equations and equations of motion, in classical field theories      176
Field equations and equations of motion, in General Relativity      176 figures
Field, H.      288 360
Fine, A.      344 360
Fischer, A.E.      325 360
Fitzgerald — Lorentz contraction      45—46 85 292
Fitzgerald, G.F.      45 360
Fitzgerald, P.      296 360
Fizeau, A.H.L      42 289 291 360
Flat (in affine space)      91
Flat connection in principal fibre bundle      271
Flat linear connection      277
Flat Riemannian manifold or metric      145 280
Fock, V.      179 284 306 316 324 360
Fokker, A.D.      142 156 157 312 313 314 316 318 359 360
Foliation      345 note 47
Fomalont, E.B.      322 360
Force, differential (Reichenbach)      236
Force, impressed      8 284
Force, inertial      20 287
Force, innate      8 284 “Mass”)
Force, Newtonian      8 18 107
Force, Newtonian, represented by “same” vector relative to all inertial frames      19 107
Force, relativistic, Einstein’s definition of 1905      109 figure 112 306 307
Force, relativistic, Planck’s definition of 1906      112
Force, universal (Reichenbach)      236—238 342 note “Lorentz “Relative
Foucault’s pendulum      194 196
Four-acceleration      105 f 306
Four-current density      114
Four-force      114
Four-force density      115
Four-momentum      114
Four-potential, electromagnetic      307 note 3
Four-tensor field      102
Four-tensor field, meaningless relatively to arbitrary frames      106 154
Four-tensor field, ordinary tensor field uniquely defined by it      106 figure
Four-vector      86 102
Four-vector, decomposition into spacelike and timelike parts      104 305
Four-velocity      105 305
Fox, J.G.      293 360
Fox, R.      296 360
Frame      28
Frame, inertial      17—20 28 51 74 224 293
Frame, rigid      14 28
Frame, rotating      147—149 314 22 315 note
Frame, uniformly accelerated      310 note 6
Frame, “stationary” (Einstein, 1905d)      51 293
Frank, P.      296 298 360
Frederick Barbarossa      248 346
Freedom in scientific theorizing      56 231 340
French, A.P.      292 296 307 360
Fresnel, A.J.      38 41 42 43 45 70 360
Freudenthal, H.      288 360
Friedman, A.      326 360
Friedman, M.      21 339 344 356 360 361
Friedmann universes      204—210 212—213 219 333—334
Friedmann universes, dismissed by Einstein (1922)      204 333
Friedmann universes, embraced by Einstein (1931)      204 figure
Friedmann universes, periodic      335 note 9 337
Friedmann.Alexander      199 204—210 333—338 361
Friedmann’s equation      334 note 31
Friedmann’s hypotheses      205
Friedrichs, K.      287 361
Fubini, G.      206 333 361
Fung, Shing-Fai      339 361
Future directed causal curve      124
Future directed causal curve, vector      92
Future distinguishing spacetime      217
Future set      217
Galilei chart      23
Galilei chart, connection with inertial frames      29
Galilei group      26 65 288
Galilei invariants of Newtonian spacetime      27
Galilei, G.      22 31 49 287 288 361
Galison, P.L.      302 361
Gauss, C F.      1 144 146 149 257 313 314 347 361
Gauss’s Theorema egregium      144
General covariance      152—158 316 note 319 321
General covariance, judged impossible in gravitational theory by Einstein (1913/14)      163—165
General covariance, vindicated by Einstein (1915)      165—167
Geodesic deviation      343 note 38
Geodesic equations      151 (5 4 7*) 277
Geodesic incompleteness      212
Geodesic incompleteness, insufficient to characterize singular spacetimes      215 figure
Geodesic incompleteness, null-geodesic incomplete Lorentz metric conformal to a complete metric      336 note 10
Geodesic Law of Motion      151 315 316
Geodesic Law of Motion, implied under certain conditions by Einstein field equations      177 figures
Geodesic of linear connection      189 277
Geodesic, affine      187
Geodesic, complete      211 figure 278
Geodesic, Riemannian      94 304
Geometrical object      98 104 316
Geometry      1 2
Geometry and causality      123 255
Geometry and Gravitation      138 139 140 142 146 150—152 194—196 240 241 245
Geometry of Free Fall and Light Propagation      4 192—194 327
Geometry, elliptical      329 note 24
Geometry, Euclidean      89 285 286 4
Geometry, Euclidean, privileged according to Dingier      343 note 34
Geometry, Minkowski      89 figures 98 121
Geometry, Minkowski, characterized by causal structure      125—128
Geometry, Non-Euclidean of Minkowski spacetime      88 89
Geometry, Non-Euclidean of rotating frame      148 figure 315
Geometry, Non-Euclidean, Cayley — Klein theory      340 note
Geometry, Riemannian      see “Riemannian manifold” “Riemannian
Geometry, spacetime      26figures 91—93 95—98 194
Geometry, “Riemann” (spherical)      329 note 23
Geroch, R.P.      216 217 254 325 335 336 337 347 361
Giannoni, C.B.      296 339 361
Giedymin, J.      350 361
Gillespie, C C.      289 361
global      257
Glymour, C.      vi 284 311 320 322 323 344 347 356 361
Godel, K.      253 331 347 361 362
Goenner, H.F.      326 330 362
Goldberg, J.N.      179 180 324 363
Goldberg, S.      291 300 302 362
Goldenberg, H.M.      322
Gooding, D.      290 362
Gorini, V.      79 80 82 297 298 352
Gravitation, theories of, Abraham      139—140 312
Gravitation, theories of, Einstein — Grossmann      158—162 169 196
Gravitation, theories of, Einstein, 1913 outline      143 158
Gravitation, theories of, Einstein, 1915 final theory      173—175 237 322
Gravitation, theories of, Einstein, 1915 first theory      170—172
Gravitation, theories of, Einstein, 1915 second theory      172 figure
Gravitation, theories of, Einstein, main hypotheses      139 159 240 324
Gravitation, theories of, Hilbert      175 figure
Gravitation, theories of, Lorentz      130f 310
Gravitation, theories of, Mie      142 figure 313 note 35 322
Gravitation, theories of, Minkowski      310 note 14
Gravitation, theories of, Newton      31—34 130 191 237
Gravitation, theories of, Nordstrom      140—142 312—313
Gravitation, theories of, Poincare      132—133 310
Gravitation, theories of, Reference to “Machian” theories      331 note 42
Gravitational energy and momentum      183 figure 319
Gravitational energy matrix      158 161 171
Gravitational energy matrix, called “energy tensor” (with sneer quotes) by Einstein      174
Gravitational field equations, (1917 version)      281 (D. 6); cf.
Gravitational field equations, (final 1915 version)      173 (5 7 17) 160 5 10)
Gravitational field equations, Einstein (discarded 1915 versions)      171 (5 7 4) 173 7 15)
Gravitational field equations, Einstein — Grossmann      161 (5 5 12) 319
Gravitational field equations, Poisson      33(1 7 4)
Gravitational field strength components in Einstein’s theories of gravity      151 158 189 237 317
Gravitational potential      7 33
Gravitational potential and spacetime metric      139 151
Gravitational potential and speed of light      138 140
Gravitational radiation      181 319 325 note
Gravitational radiation and equations of motion      181 figures
Gravitational radiation, propagation speed      181 310 note
Gravitational redshift      135 138 311 note
Gravity, as a universal force (Reichenbach)      236—238 342 note
Gravity, as a universal force (Reichenbach), linked to proper time      138 (see also “Geometry and gravitation”)
Green, G.      290 362
Greene, R.E.      326 362
Grishchuk, L.P.      325 362
Grommer, J.      178 197 323 324 359
Gron, O.      315 362
Grossmann, M.      139 142 143 146 152 158 159 161 162 163 169 176 312 314 315 316 318 319 320 321 322 324 328 359 362
Groth, E.J.      329 362
Groups, semidirect product of two      26 (see also “Action of a group” “Galilei “Lie “Lorentz “Poincare “Velocity
Grunbaum, A.      vi 223 229 242—247 293 315 338 343 344—345 362
Guidance field (Fuhrungsfeld)      194
Guth, E.      283 362
Habicht, C.      48 292
Hafele, J.C      296 362
Hall, A.R.      284 285 286 320 362
Hall, D.B.      296 373
Hall, M.B.      284 285 286 320 362
Halley, E      332 362
Harrison, E.R.      332 363
Harvey, A.L.      310 363
Hausdorff topology      124 figure
Havas, P.      vi 179 180 287 310 324 363
Hawking, S.W.      129 212 213 214 215 216 228 253 254 284 309 314 335 336 337 339 347 354 355 363 371
Heaviside, O.      38 290 293
Heintzmann, H.      306 363
Helmholtz, H.von      36 193 238 240 289 327 333 363
Herglotz, G.      88
Herivel, J.      288 363
Heriz, H.      38 39—40 42 50 130 289 290—291 293 363 364
Herneck, F.      319 363
Hessenberg, G      326 364
Hilbert, D.      88 175 232 285 302 308 320 321 323 364
Hill, A.R.      322 364
Hippias of Elis      1
Hirosige, T.      291 292 300 302 364
Hoek, M.      293 364
Hoffmann, B.      178 184 320 324 359 364 366 371
Hojman, S.A.      332 364
Hole argument against general covariance      163—168
Hole argument against general covariance, criticized by Hilbert      320 note 33
Holton, G.      292 293 300 364
Homeomorphism      348 note 2
Homogeneous space      72 296 6
Homotopic curves      346 note 11
Honl, H.      320 328 331 364
Horismos relation      121
Horismos, future      121
Horismos, past      121
Horizon, event      254 figure
Horizon, particle      254 figure
Horizon, Penrose particle      347 note 20
Horowitz, G.T.      254 336 347 361
Horwich, P.      344 364
Hoyle, F.      331 364
Hsieh, K.C.      339 361
Hubble, E      203 332 364
Humason, M.L.      203 364
Huygens, C.      33
Hypersurface      261
i-th coordinate function      14 256
i-th parametric line      259 (see also under “Fermi chart” “Galilei “Lorentz “Normal “Winnie
Ideal points of relativistic spacetime      183 216—218 324
Ignatowsky, W.von      3 76—82 298—299 364
Inertia      8 107 135
Inertia of charged particle moving in electromagnetic field      110
Inertia, compass of      200 330
Inertia, relative to masses, not “space”      197 (see also under “Mass”)
Inertial      see under “Force” “Frame” “Mass” “Motion” “Time-scale”
Infeld, L.      178 179 184 323 324 359 364
Ingoli, F.      288
Inner product      303 note 1
Inner product, Minkowski (on $\mathbb{R}^4$)      91
Integral curve of a vector field      260
Interval, Minkowski, in $\mathbb{R}^4$      89
Interval, Minkowski, in $\mathcal{M}$      90 92
Invariant      26
Ives, H.I.      306 364
Iyanaga, S.      296 365
Jackson.F.      293 365
Jacobi’s equation      343 note 38
Jammer, M.      285 294 295 325 365
Janis, A.I.      315 338 362 365
Johnson, R.      217 365
Joyce, James      203
Kalotas, T.M.      298 367
Kamlah, A.      340 367
Kampen, E.R.van      316 374
Kanitscheider, B.      vi 347 365
Kant, I.I.      221 222 228 231 232 233 234 288 289 340 341 365
Kaufmann.W.      290
Kawada, Y.      296 365
Keating, R.E      296 362
Kelvin, Lord (William Thomson)      38 290
Kepler, J.      203 332
Kernel of a linear mapping      349 note 2
Kerr, R.P.      253 335 365
Keswani, G H.      300 365
Kilmister, C.W.      291 293 294 295 301 302 306 310 311 315 316 323 328 365
King, A.R.      129 309 337 359 363
Klein, F.      2 26 34 176 283 329 330 340 341 365 366
Kobayashi, S.      284 295 313 314 317 335 348 349 366
Kohlrausch, F      37 289
Koslow, A.      287 366
Kottler, F.      306 316 366
Koyre, A.      285 366 370
Kramer, D.      347 366
Kretschmann, E      321 366
Kronheimer, E H.      3 123 217 308 337 361 366
Krotkov, R.      310 373
Kuchaf, K.      332 364
Lagrange, J.L.      38 288 366
Lanczos, C.      283 366
Landau, L.D.      287 293 345 366
Lange, L.      3 17—20 51 53 55 225 286 287 366
Langevin clock      52
Langevin, P.      52
Lansberg, A.      200
Laplace, P.S.de      310
Larmor, J.      290 292 296 366
Latzer, R.W.      308 309 366
Laub, J.      296 359
Laue, M.von      2 3 118—120 141 158 291 292 293 296 308 312 366 367
Lavoisier, A.L.      220
Law of Currents (Ampere)      35 36
Law of Gravity (Newton)      32 figures
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте