|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
"Conduction band" concept, DNA/metal complex long-range electron transfer 110—111
"Off-diagonal" fluctuations, DNA/metal complex long-range electron transfer, Redfield equation solutions 103—104
Ab initio calculations, minimum energy paths (MEPs) 401
Ab initio calculations, reaction path applications 422—423
Ab initio calculations, reaction path applications, interpolated surfaces convergence 438—439
Ab initio calculations, reaction path applications, polyatomic surfaces 445—446
Ab initio calculations, reaction path applications, solution reactions 427
Ab initio calculations, reaction path applications, statistical studies 424—425
Ab initio calculations, reaction path applications, trajectory studies 425—426
Ab initio calculations, reaction path Hamiltonian (RPH), potential energy surfaces (PES) dynamics 417
Ab initio calculations, semiempirical molecular orbital theory, accuracy and efficiency 711—714
Ab initio calculations, semiempirical molecular orbital theory, available techniques 705—711
Ab initio calculations, semiempirical molecular orbital theory, computational efficiency 746—747
Ab initio calculations, semiempirical molecular orbital theory, fullerene chemistry 716—718
Ab initio calculations, semiempirical molecular orbital theory, future research 747—749
Ab initio calculations, semiempirical molecular orbital theory, general-purpose applications 730—737
Ab initio calculations, semiempirical molecular orbital theory, parametrization 742—744
Ab initio calculations, semiempirical molecular orbital theory, quantum mechanics/molecular mechanical hybrids 738—742
Ab initio calculations, semiempirical molecular orbital theory, valence states 719—722
Ab initio calculations, tight-binding molecular dynamics (TBMD), anharmonic effects in solids 667—669
Ab initio calculations, tight-binding molecular dynamics (TBMD), liquid silicon simulation 670—674
Ab initio calculations, transition metal structure, electronic calculations 337—345
Ab initio calculations, transition metal structure, limits of CASPT2 technique 298—299
Absolute errors, quantum Monte Carlo (QMC) and 2—3
Absolute errors, semiempirical molecular orbital theory 724—730
Abu-Eittah, R.H. 274—275(111) 328
Acceptor-bridge dynamics, DNA/metal, complex long-range electron transfer 109—110
Acetone spectroscopy, multiconfigurational second-order perturbation theory (CASPT2) 258—263
Acetyl systems, bond strengths 373—374
Achiba, Y. 678(86) 700
Acioli, P. 17(43) 36
Activated dynamics, centroid density 204—212
Active space, transition metal compounds, CASSCF/CASPT2 studies 290—301
Adams, G.F. 419(138) 423(138) 451
Adams, J.E. 410(75) 411(75) 449
Adiabatic bath limit, canonical transformation of system-bath coupling strength, small-polaron transformation 119—120
Adiabatic techniques, canonical transformation of system-bath, coupling strength 120—121
Adiabatic techniques, DNA/metal complex long-range electron, transfer 106—109
Agostic bonding, transition metal electronic structure, second-row transition metals 358—359
Agren, H. 255(55) 326
Ahlrichs, R. 339(9) 384 712(62) 717(81) 751—752
Aissing, G. 28(91) 38
Akesson, R. 291(178) 299(178) 330
Al-Sugeir, F.A. 274—275(111) 328
Albers, J. 83(50) 132
Alberts, I.L. 712(60) 751
Albinsson, B. 279—280(133) 328
Albrecht, A.C. 80(34) 132
Alder, B.J. 4(6 9) 7(6) 8(19) 10(26) 12(9) 24(9) 27(9) 35—36
Aleman, C. 732(152) 754
Alerhand, O.L. 680(107) 701
Alexander, J.J. 309—310(198) 330
Alexander, S.A. 8(27) 11(27) 28(91) 36 38
Algebraic lattices, one-dimensional algebraic models, multiple oscillators 533—534
Algebraic lattices, one-dimensional algebraic models, two oscillators, anharmonic coupling 524—525
Algebraic lattices, three-dimensional algebraic models, triatomic molecules 577—586
Algebraic models, benzene dimer case study 626—631
Algebraic models, computer routines 638—644
Algebraic models, dynamical symmetries, Lie algebras 468—479
Algebraic models, dynamical symmetries, overview 462—468
Algebraic models, dynamical symmetries, U(2) model 484—494
Algebraic models, dynamical symmetries, U(4) model 494—511
Algebraic models, dynamical symmetries, vibron model 480—484
Algebraic models, geometric interpretation 631—638
Algebraic models, one-dimensional polyatomic molecules, anharmonic couplings 566—574
Algebraic models, one-dimensional polyatomic molecules, electromagnetic transition intensities 556—566
Algebraic models, one-dimensional polyatomic molecules, multiple oscillator anharmonic coupling 531—552
Algebraic models, one-dimensional polyatomic molecules, overview 511—513
Algebraic models, one-dimensional polyatomic molecules, two oscillator anharmonic coupling 513—531
Algebraic models, overview 456
Algebraic models, strengths and limitations of 644—645
Algebraic models, theoretical models 456—458
Algebraic models, three-dimensional polyatomic molecules, anharmonic Fermi interactions 598—601
Algebraic models, three-dimensional polyatomic molecules, electromagnetic transition intensities 610—615
Algebraic models, three-dimensional polyatomic molecules, overview 575—576
Algebraic models, three-dimensional polyatomic molecules, rotational spectroscopy 601—610
Algebraic models, three-dimensional polyatomic molecules, tetratomic molecules 615—625
Algebraic models, three-dimensional polyatomic molecules, triatomic molecules, rovibrator coupling 576—598
Alhambra, C. 732(153) 754
Alhassid, Y. 483(25) 491(25) 645(25 115—117) 646 649
Aliev, M.R. 601(78) 648
All-electron calculations, quantum Monte Carlo (QMC) calculations 27
Allamandola, L.J. 286(152 165) 329
Allan, D.C. 680(106) 701
Allan, M. 284(149) 329
Allen, L. 80(31) 132
Allen, M.P. 439(207) 453
Allen, P.B. 665(37) 671(52) 699
Allen, R.E. 652(16) 698
Allen, W.D. 404(61) 425(179) 449 452
Allinger, N.L. 739(235—236) 756
Almloef, J. 248(39) 326 340(13) 384 415(90) 450
Amado, R.D. 638(107) 649
Amat — Nielsen coupling, tetratomic molecules 623—625
Amat, G. 648
Ambegaokar, V. 70(73) 76
Ames, J.B. 128(120) 134
Amini, A.M. 42(19—20) 74—75
Aminobenzonitrile (ABN), multiconfigurational second-order perturbation theory (CASPT2), solvation effects 256—257
Amorphous structures, tight-binding molecular dynamics energy models 674—675
Amos, R.D. 390(8) 447 712(60) 751
An, G. 21(63) 37
Andersen, O.K. 695(111) 701
Anderson, J.B. 4(7 13—14) 7(7) 25(13) 26(13—14 78—79) 27(80) 35 37 204(91) 217
Anderson, P.W. 101(89) 133
Anderson, R.L. 604(81) 648
Andersson, K. 222(6—7 11—12 14) 224(12—13) 225(6—7 12 14) 226(6—7) 227(12—13 15) 230(20) 236(6—7) 238(14 23—24) 239(25—26) 241(7) 243(7 14 23) 244(15 23 26) 246(32—33) 247—248(13) 252(33) 256(11) 263(13) 269(33) 276(13) 283—284(13) 287(23 32) 288(23) 289(173) 296(32) 320(23 26) 323(7 23) 324(210) 325 329 331 370(56) 380(56 99—100) 386—387
Andreoni, W. 29(95) 38
Andrews, J.S. 712(60) 751
Andrews, L. 286(160 166) 287(166) 329
Andzelm, J. 712(59) 751
Angular momentum, one-dimensional algebraic models 514—531
Angular momentum, rovibrator coupling, triatomic molecules 582—586
Angular momentum, tetratomic molecules, algebraic models 621—625
Angyan, J.G. 736(206) 755
Anharmonic coupling, one-dimensional algebraic models, Fermi resonances 566—574
Anharmonic coupling, one-dimensional algebraic models, Majorana symmetry adaptation, multiple oscillators 540—547
Anharmonic coupling, one-dimensional algebraic models, mass scaling laws and symmetry reduction 552—556
Anharmonic coupling, one-dimensional algebraic models, multiple oscillators 531—556
Anharmonic coupling, one-dimensional algebraic models, two-oscillator systems 513—531
Anharmonic coupling, one-dimensional algebraic models, vibrational spectroscopy of polyatomic molecules 547—552
Anharmonic coupling, potential energy surfaces (PES), reaction path calculations 423—426
Anharmonic coupling, potential energy surfaces (PES), statistical studies 424—425
Anharmonic coupling, potential energy surfaces (PES), trajectory studies 425—426
Anharmonic coupling, three-dimensional algebraic models, bent triatomic molecules, rovibrator coupling 590—592
Anharmonic coupling, three-dimensional algebraic models, Fermi resonance 598—601
Anharmonic coupling, tight-binding molecular dynamics (TBMD) 667—669
Anharmonic coupling, U(2) algebraic model, limits 490—494
Anthracene cation, excitation energies 286—287
Antikainen, J. 128(119) 134
Antonelli, A. 680(98) 701
Antonetti, A. 65(60) 76
Aqvist, J. 737(223) 756
Arendt, M.F. 720(119) 753
Argyres, P.N. 83(49) 132
Arima, A. 459(8—9) 646
Arkin, M.R. 101(83) 111(83) 133
Arlington, C.A. 354—355(31) 382(31) 385
Armentrout, P.B. 354(27) 356(27 29) 367(51) 369(51) 372(27) 385
Arnoldi, W.E. 96(76) 133
Arnow, D.M. 25(68) 37
Aromatic amino acids, electronic spectra 282—284
Arrhenius equations, DNA/metal complex long-range electron transfer, temperature-dependence 106—109
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), imidazole molecule 280—282
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), indole molecule 277—280
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), LCPs and PAHs 285—287
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), organic molecule spectroscopy 248—251
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), relativistic effects in transition dihalides 382—306
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), solvation effects 257—258
Atomic natural orbital (ANO) basis sets, multiconfigurational second-order, perturbation theory (CASPT2), transition metal compound spectroscopy 288—290
| Atomic natural orbital (ANO) basis sets, transition metal electronic structure 339—340
Atoms, quantum Monte Carlo (QMC), calculations 26—28
Auxiliary-field techniques, Fermion sign problem and 25—26
Averaged coupled pair functional technique (ACPF), metal electronic structure, first-row transition metal electronic structure 368—371
Averaged coupled pair functional technique (ACPF), metal electronic structure, overview 338—345
Averaging formalism, centroid density 153—157
Averaging formalism, centroid density, imaginary-time correlation functions 155—157
Averaging formalism, centroid density, operator averages 153—155
Averaging formalism, centroid molecular dynamics (CMD), Kubo-transformed position correlation function 174—175
Aviyente, V. 736(208) 755
Azzouz, H. 207(109) 209(109) 218
B3LYP geometry, transition metal electronic structure, applications 376—382
B3LYP geometry, transition metal electronic structure, first-row transition metal electronic structure 366—371
B3LYP geometry, transition metal electronic structure, future trends 383—384
B3LYP geometry, transition metal electronic structure, geometries 347
B3LYP geometry, transition metal electronic structure, limit correction 342—345
B3LYP geometry, transition metal electronic structure, second-row transition metals 355—359
Baca, A. 270—271(100) 327
Bachelet, G.B. 18(47 49) 19(49) 36
Bachrach, S.M. 734(164) 754
Backflow wavefunction, QMC calculation, extended systems 32
Bacon, A.D. 706(28) 711(28) 713(28) 722(28) 750
Bacterial photosynthesis, real-time QMC techniques, primary charge separation 65—68
Bader, J.S. 91(64) 92(64) 93(71) 133 207(102) 217
Bader, R.W.F. 734(169) 754
Baeckvall, J.E. 375(89) 387
Baer, M. 712(62) 751
Bagus, P.S. 299(182) 330
Baker, J. 408(71) 449
Bakowies D. 713(63) 715(72 74) 717(81 86) 734—735(159—160) 739(159 234) 740(159—160) 741(159 234) 745(74) 746(72) 751—752 754
Balasubramanian, K. 362(42) 385
Baldridge, K.K. 401(42) 408(42) 419(147) 448 451
Balkanski, M. 668(42) 670(42) 699
Balkova, A. 246(31) 325
Ballone, P. 652(12) 693(134) 698 702
Bally, T. 284(145—147) 285(145 151) 329
Bar-Yam, Y. 680(97) 701
Baraff, G.A. 680(100) 701
Barbara, P.F. 415(90) 450
Barnes, E.E. 258(66) 326
Barnes, L.A. 291(176) 329
Barnett, R.N. 28(90) 37
Baroni, S. 26(75) 37 684(126) 702
Bartana, A. 98(78) 133
Bartis, T.L.O. 277(126) 328
Bartlett, R.J. 8(27) 11(27) 36 246(31) 325 339(10) 384
Bartol, D. 401(42) 408(42) 448
Barton, J.K. 101(81—83) 111(83) 133
Bash, P.A. 736(187) 737(227) 738(227 229) 739—740(227) 755—756
Basilevsky, M.V. 414(86) 449
Basis set calculations, multiconfigurational second-order, perturbation theory (CASPT2), organic molecule spectroscopy applications 248—251
Basis set calculations, transition metal electronic structure 338—345
Basis set calculations, variational Monte Carlo (VMC) and 6
Baskes, M.I. 652(9) 698
Bassi, D. 538(48) 571(48) 574(67) 647—648
Bastiansen O. 212(107) 328
Baumeister, W. 250(45) 326
Bauschlicher, C.W.Jr. 27(88) 37 221(3) 287(172) 290(174) 299(183) 324 329—330 336(6) 355(33) 356(33) 363(53) 367(33 50) 369(33 53) 370(54—55) 371(6) 379(98) 384—387
Bayly, C.I. 734(182—183) 754
Beach, N.A. 310(199) 314(199) 330
Beauchamp, J.L. 354(28) 385
Beck, B. 732(162) 754
Beck, T.L. 41(8) 42(15) 47(15) 74 136(19—20) 137—138(19) 142(19) 153(19) 155(19) 181—182(19) 208(19) 212(19) 215
Becke, A.D. 341—342(18—19) 384
Beez, M. 284(148) 329
Behrman, E.C. 41(11) 74 114(108) 134
Bell, R.L. 419(152) 423(152) 452
Benchmark testing, tight-binding molecular dynamics (TBMD) 685—689
Benchmark testing, transition metal electronic structure 339—345
Bengali, A.A. 379(91) 387
Benjamin, I. 531(37—38) 564(51) 567(65) 647—648
Bennett, C.H. 204(92) 217
Benson, M.T. 371(59) 386
Bent triatomic molecules, rotational spectroscopy 603—610
Bent triatomic molecules, rovibrator coupling 586—592
Bentley, J.A. 128(118) 134
Benzene, algebraic models, case study 626—631
Benzene, multiconfigurational second-order perturbation theory (CASPT2) 247—248
Benzene, one-dimensional algebraic model, electromagnetic transition intensities 561—566
Benzene, one-dimensional algebraic model, Fermi resonances, anharmonic couplings 568—574
Benzene, one-dimensional algebraic model, Majorana symmetry adaptation, multiple oscillators 543—547
Benzene, one-dimensional algebraic model, mass scaling laws and symmetry reduction 553—556
Benzene, one-dimensional algebraic model, vibrational spectroscopy, polyatomic molecules 549—552
Beratan, D.N. 81(44) 101(90) 113(44) 132—133
Beretan, D.N. 70(75) 76
Bergman, R.G. 377(90) 379(91) 387
Berman, J.M. 258(69) 326
Berman, M. 88(58—59) 98(59) 132
Bernarducci, E.R. 280(134) 328
Berne, B.J. 5(15) 35 40(4) 41(4 7 10) 60(49) 61(49) 74—75 79(21) 80(24) 82(24) 85(24) 93(71) 131—133 136—138(17) 139(41) 142(17) 153(17) 155(17) 176(65) 181(17 68) 182(17 41) 183(68) 184(72 75) 185(75) 186(41) 188(41) 190(72) 201—202(75) 204(88—89 94) 208(17) 212(17) 215—217
Bernhardsson, A. 255(59) 326
Bernhole, J. 680(98) 701
Bernu, B. 10(25) 22(64) 23(65) 24(64) 36—37
Berrondo, M. 484(29) 646
Berry, R.S. 504(33) 647
Besler, B.H. 734(173) 754
Betran, J. 406(64) 419(64) 449
Betts, J.N. 70(75) 76
Beveridge, D.L. 703(4) 705(4) 706(31) 713(4) 749—750
Bhattacharya, A. 26(79) 37
Bianchi, R. 25(69) 37
Bieri, G. 284(148) 329
Bifurcations, reaction paths, PES analysis 407—408 429—430
Bilinear generators, one-dimensional algebraic models, two oscillators, anharmonic coupling 513
Billing, G.D. 415(89) 416(89 93) 425(89 93) 450
Billups, W.E. 263(84) 277(123) 279(123) 327—328 715(68) 751
Binggeli, N. 671(50) 699
Bioexponential dynamics, bacterial photosynthesis, primary charge separation 68
Biothiopene, multiconfigurational second-order perturbation theory (CASPT2), interacting fragments 269—270 273—276
Biphenyl (BP), multiconfigurational second-order perturbation theory (CASPT2), interacting fragments 269—273
Birnbaum, D. 274(112 218) 275(112) 328 331
Bisseling, K.H. 567(65) 648
Bisseling, R.H. 78(2) 98(2) 131
Biswas, R. 652(6) 654(24) 656(24) 658(24) 669(24) 677(66—67) 679—680(24) 681(67 116) 694(116) 698—699 701
Bivins, R. 497(32) 647
Bixon, M. 65(58) 68(67) 76
Biznyuk, A.A. 731(142) 753
Bjoerkman, E.E. 375(89) 387
Blake, J.F. 417(104) 450
Blankenship, T.A. 286(160) 329
Blitz, M.A. 365—366(48) 385
Bliznyuk, A.A. 736—737(195) 755
Bloch equation, multiconfigurational second-order perturbation theory (CASPT2), multistate CASPT2 235—237
Bloch — Redfield relaxation equation, overview 80
Bloch, F. 80(28) 83(28) 132
Blocking procedure, one-dimensional algebraic models, Fermi resonances, anharmonic couplings 571—574
Blocking procedure, one-dimensional algebraic models, quantum Monte Carlo analysis, overview 44—48
Blocking procedure, one-dimensional algebraic models, quantum Monte Carlo analysis, spin-boson dynamics 48—49
Blocking procedure, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules 549—552
Blomberg, M.R.A. 222(8 11) 256(11) 325 340(15) 353—354(15) 364(46) 366(49) 372(65—71 78 80—81) 375(88) 384—387
Blum, K. 80(26) 82(26) 83(26) 84(26) 132
Blume, T. 354—355(31) 382(31) 385
Boatz, J.A. 417(105) 450
Bock, H. 284(148) 329
Bockisch, F. 747(261) 757
Bogey, M. 263(90) 327
Bohringer, H. 429(193) 453
Boltzmann distribution, centroid density, equilibrium properties 141—143
Boltzmann distribution, centroid density, overview 139
Boltzmann distribution, centroid molecular dynamics (CMD), Kubo-transformed position correlation function 173—175
Boltzmann distribution, centroid molecular dynamics (CMD), real-time correlation functions 167—169
Bond coordinates, one-dimensional algebraic models, electromagnetic transition intensities 558—566
Bond coordinates, one-dimensional algebraic models, mass scaling laws and symmetry reduction 553—556
Bond coordinates, one-dimensional algebraic models, multiple oscillators, Majorana symmetry adaptation 536—547
Bond coordinates, one-dimensional algebraic models, overview 512
Bond strengths, transition metal electronic structure, applications 372—379
Bond strengths, transition metal electronic structure, second-row transition metals 353—359
Bondybey, V.E. 331 379(93) 387
Boninsegni, M. 26(72) 37
Borgis, D. 207(109) 209(109) 218
|
|
|
Ðåêëàìà |
|
|
|