Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Redfield equation, stochastic model applications      98—112
Redfield equation, stochastic model applications, long-range electron transfer in DNA/metal complexes      101—112
Redfield equation, stochastic model applications, two-level system in fast stochastic bath      98—100
Redfield relaxation tensor, defined      84—87
Redfield relaxation tensor, factorization      86—87
Redfield relaxation tensor, Redfield equation development and      83—84
Redfield relaxation tensor, system-bath coupling separation      85—86
Redfield, A.G.      80(29—30) 83(29—30) 93(30) 132
Redmon, M.J.      401(42) 408(42) 448
Reduced density matrix theory, condensed-phase system quantum dynamics      80
Reduced density matrix theory, dynamical semigroup approach      87—88
Reduced density matrix theory, factorization      86—87
Reduced density matrix theory, overview      81—82
Reduced density matrix theory, Redfield equation      82—84
Reduced density matrix theory, Redfield relaxation tensor      84—87
Reduced density matrix theory, system-bath coupling separation      85—86
Redundant coordinates, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules      548—552
Reed, A.F.      734(168) 754
Rehmas, A.A.      277(124) 328
Reinhardt, W.P.      538(43) 572(43) 647
Relativistic effective core potentials (RECPs), transition metal compound structure, overview      335
Relativistic effective core potentials (RECPs), transition metal compound structure, second-row transition metals      349—359
Relativistic effective core potentials (RECPs), transition metal compound structure, third-row transition metals      360—365
Relativistic effects, transition metal compound spectroscopy, CASSCF/CASPT2 techniques      301—306
Release node calculations, Fermion sign problem and      23—25
Remington, R.B.      390(6) 447
Remler, D.K.      184(74) 188—189(74) 216
Rendell, A.      222(5 10) 247(5) 254(10) 325
Renormalization of diagrams, centroid density      146—153
Resonantly enhanced multiphoton ionization (REMPI), multiconfigurational second-order perturbation theory (CASPT2), carbonyl compounds      259
Restricted active space SCF (RASSCF), organic molecule spectroscopy      254—255
Restricted path-integral Monte Carlo (RPIMC), summary      10—11
Reynolds, C.A.      732(155—156) 754
Reynolds, P.J.      4(10) 8(19) 9(10) 13(34) 16(37) 19(54) 28(90) 35—37
Rguini, N.      736(205) 739(231) 755—756
Ribbing, C.      302(192) 305(195) 330
Ricca, A.      367(50) 370(54—55) 385—386
Rice, J.E.      712(60) 751
Rice, J.K.      419(138) 423(138) 451
Richard, S.      717(81) 752
Richards, W.G.      732(155—156) 754
Richardson, D.M.      202(78) 217
Rick, S.L.      207(114) 218
Riddell, F.G.      741(240) 756
Ridley, J.      706(27) 711(27) 713(27) 750
Rinaldi, D.      736(205—206) 739(231 233) 755—756
Ringe, D.      738(229) 756
Rios, M.A.      731(143) 753
Riseborough, P.      42(21) 75
Rivail, J.-L.      736(198 204—206) 739(231—233) 755—756
Rizzo, A.      8(83) 27(83) 37
Robiette, A.G.      590(74) 648
Roby, K.R.      726(130—131) 753
Rodriguez, J.      731(143) 753
Roepstorff, G.      136(12) 214
Roesch, N.      309(201) 310(201) 312(201) 316(201) 319(201) 330 736(212) 755
Roethlisberger, U.      29(95) 38
ROHF wavefunctions, CASPT2/CASSCF techniques, isoelectronic ligand field spectra      309—312
ROHF wavefunctions, CASPT2/CASSCF techniques, zeroth-order Hamiltonian      228—232
Rohlfing, C.M.      716(78 80) 751
Rom, N.      412(80) 417(80) 449
Romero-Rochin, V.      83(53) 88(53 61) 132—133
Roncero, O.      78(2) 98(2) 131
Roos, B.O.      221(2) 222(5—13) 224(2 12—13) 225(6—7 12) 226(6—7) 227(12—13 15) 236(6—7) 238(22—23) 239(26) 240(27) 241(7) 243(7 23) 244(15 23 26 28—29) 246(32—33) 247(5 13 34) 248(13 27 35—36 40—41) 249(43) 250(44) 252(33 44 46—47) 253(48) 254(49) 255(59) 257(62) 262(65) 263(13 48 65 79—81) 268(36 79 92—93) 269(33 79 94—95) 270(96) 273(94) 276(13 46 115—116) 277(27 41 127) 280(116) 282(36 115—116) 283(13 115—116) 284(13 36 46 115—116 141) 286(153) 287(22 28—29 170) 288(23) 289(171 173) 290(171) 291(28—29 170) 298(28—29) 300(184) 301(29 170) 302(41) 308(29 41 170) 311(170) 320(23 29) 323(7 23) 324(210—211) 324—331 340(14) 370(56) 3 80(56 99—101) 381 384 386—387
Rosenberg, R.O.      204(89) 217
Rosenbluth, A.W.      42(18) 74
Rosenbluth, M.N.      42(18) 74
Rosi, M.      355—356(33) 367(33 50) 369(33) 385
Roskamp, E.J.      717(93) 752
Rossetti, R.      270—271(100) 327
Rossi, I.      731—732(147) 743(147) 753
Rossi, M.J.      286(155) 329
Rossky, P.J.      78(5 9) 79(5 9) 131
Rotational spectroscopy, three-dimensional algebraic models      601—610
Rotenberg, M.      497(32) 647
Roth, K.      284(145—147) 285(145) 329
Rothstein, S.M.      27(86) 28(92) 37—38
Rotkiewicz, K.      256—257(61) 326
Rovibrator coupling, triatomic molecules      576—598
Rovibrator coupling, triatomic molecules, bent molecules      586—592
Rovibrator coupling, triatomic molecules, linear molecules      592—598
Rubio, M.      269(94—95) 270(96—97) 271—272(97) 277(127) 327—328
Rudin, S.P.      21(61) 57
Ruedenberg, K.      401(50) 407(65 67) 408(69—70) 415(70) 426(70) 430(67 69—70) 448—449
Ruf, B.A.      400(40) 406(40 63) 448—449
Ruiz-Lopez, M.F.      736(198 208) 755
Rullmann, J.C.      737(228) 756
Runge, K.J.      8(20) 12(20) 14(20) 15(20) 27(20) 35
Ruoff, R.S.      715(69) 751
Russegger, P.      396(29) 448
Russo, N.      371(58) 376(58) 386
Russo, T.V.      28(94) 38 96(74) 133
Ruthardt, K.      331 379(92) 387
Ryaboy, V.      412(80) 417(80) 449
Rydberg states, CASPT2 techniques, basis set effects, organic molecule spectroscopy      250—251
Rydberg states, CASPT2 techniques, biphenyl fragments      272—273
Rydberg states, CASPT2 techniques, carbonyl compounds      258—263
Rydberg states, CASPT2 techniques, indole molecule      278—280
Rydberg states, CASPT2 techniques, intruder-state problem      237—244
Rydberg states, CASPT2 techniques, LCPs and PAHs      285—287
Rydberg states, CASPT2 techniques, MCP interacting double bonds      264—269
Rydberg states, CASPT2 techniques, problems and limitations      251—255
Ryu, U.      248(37) 326
Rzepa, H.S.      736(201) 755
Saad, Y.      96(77) 133
Sablijic, A.      258(67) 326
Saddle point geometry, potential energy surfaces (PES)      395—396
Saddle point geometry, reaction paths      430
Sadleg, A.J.      370(56) 380(56) 386
Sadlej, A.J.      222(6 11) 225—226(6) 236(6) 256(11) 325
Saeed, A.      676—677(65) 700
Sagiv, J.      270(105) 272(105) 328
Saito, K.      678(86) 700
Salahub, D.R.      335(2) 371(58) 376(58) 384 386
Salama, F.      286(152 165) 329
Salem, L.      703(2) 720(2) 749
Saleur, H.      72(79) 76
SAM1 parametrization, semiempirical molecular orbital theory      709—711
Samdal, S.      272(107) 328
Sammeth, D.M.      277(125) 328
Sampling techniques, real-time path integration      57—59
Sanche, L.      270(106) 272(106) 328
Sanches-Marin, J.      273(109) 328
Sanderson, R.T.      734(175—176) 754
Sankey, O.F.      684(127) 702
Santry, D.P.      705(16) 750
Sanz, J.      712(60) 751
Sarma, Das.      652(10) 698
Sassenberg, U.      354—355(31) 382(31) 385
Sassetti, M.      68(72) 71(72) 76
Savin, A.      20(45) 36
Sawada, S.      654—655(22) 658(22) 680(22) 694(22) 698
Scalapino, D.J.      43(30) 44(30) 75
Scalettar, R.T.      43(30) 44(30) 75
Schaefer, H.F.      745(254) 757
Schaefer, H.F.III.      337(7) 384 390(4—6) 412(76) 416(96) 417(76) 419(76 96 143) 420(76 96 143) 423(143) 447 449—451
Schatz — Elgersma surfaces, reaction paths, potential energy surfaces (PES)      439—444
Schatz, G.C.      393(13 17) 419(145) 422(17 156 161) 447—448 451—452
Scheer, H.      65(62) 76
Scheiner, S.      419(151) 423(151) 451
Schenter, G.K.      173(63) 180(66) 206(63 96) 207(63 66 96 119) 209(124) 216—217 417(99 113) 427(99 113 183) 450 452
Scherer, G.J.      567(54) 647
Schiffer, M.      68(65) 76
Schlegel, H.B.      393(14) 396(24—25 30—32) 401(30—32 43) 407(66) 408(43) 422(14) 428(43) 430(198) 441(208) 447—449 453
Schleyer, P.v.R.      712(61) 714(61) 722(61) 751
Schlueter, M.A.      17(39) 18(48) 36 655(31) 677(69) 679(31) 680(100) 699
Schmalz, G.      716(77) 751
Schmid, A.      55(43) 68(69) 70(69) 71(69) 75—76
Schmidt, K.E.      4(12) 8(21 30) 11(30) 12(30) 16(21 38) 25(68) 27(81) 35—37
Schmidt, M.W.      263—268(82) 327 401(42) 408(42) 448
Schmidt, P.      396(26) 448
Schmidt, R.      747(260) 757
Schmidt, W.      286(162) 329
Schoen, G.      70(73) 76
Scholz, M.      703(7) 713(7) 732—733(7) 749
Schor, H.H.      567(65) 648
Schramm, P.      53(40) 75
Schreckenbach, G.      372(63) 386
Schreiner, A.F.      316(204) 330
Schroeder, H.      309(201) 310(201) 312(201) 316(201) 319(201) 330
Schroeder, S.      710(48—49) 713(48) 729(48—49) 731(48—49) 750
Schroedinger equation, molecular spectroscopy      457
Schroedinger equation, quantum Monte Carlo (QMC) and      2
Schroedinger equation, Redfield equation solutions, short-iterative Arnoldi propagator      95
Schroedinger equation, reduced density matrix theory      82
Schroedinger equation, U(2) algebraic model      493—494
Schroedinger equation, U(4) algebraic model      494
Schroedinger equation, vibron models of dynamical symmetry      481—484
Schubert, M.      80(33) 132
Schuetz, M.      286(153) 329
Schueuermann, G.      736(214) 755
Schugar, H.J.      280(134) 328
Schulman, L.S.      136(9) 214
Schulte, K.-W.      710(44) 711(55) 750—751
Schultheiss, M.      20(45) 36
Schulz, J.      706(26) 710(26) 713(26) 722(26) 723(120) 725(26) 750 753
Schulz, M.      661(29) 699
Schulz, R.      711(56) 751
Schwartz, S.D.      411(55—56) 412(78) 417(78 98) 427(78 98) 449—451
Schwarz, H.      717(90) 752
Schweig, A.      710(44 50) 729(50) 750
Schweitzer, K.S.      120(117) 134
Schwenke, D.W.      393(15) 417(119) 419(15) 448 450
Schwerdtfeger, P.      401(51) 449
Schwinger realization, one-dimensional algebraic models, two oscillators, anharmonic coupling      513—514
Schwinger realization, U(2) algebraic model      484—485
Schwinger, J.      484(30) 647
Schyja, V.      747(258) 757
Scotoni, M.      538(48) 571(48) 574(67) 647—648
Scrocco, E.      255(54) 326
Scuseria, G.E.      29(97) 38 320(207) 330 363(53) 369(53) 386 677(83) 700 715(75) 717(89 94—96) 718(94—96) 751—752
Second quantization, Lie algebra      473
Second-order perturbation theory, multiconfigurational techniques, future research      383—384
Second-row transition metals, electronic structure calculations applications      372—379 381—382
Second-row transition metals, electronic structure calculations applications, techniques      348—359
Secular approximation, Redfield relaxation tensor      84—85
Segal, G.A.      703(6) 705(16) 706(29) 713(6) 727(29) 749
Seifert, G.      747(260) 757
Seiler, R.      409(72) 449
Sekiya, M.      8(83) 27(83) 37
Self-consistent field (SCF) techniques, semiempirical molecular orbital theory      703—704 726—730
Self-consistent field (SCF) techniques, transition metal electronic structure, applications      372—379
Self-consistent field (SCF) techniques, transition metal electronic structure, first-row transition metals      365—371
Self-consistent field (SCF) techniques, transition metal electronic structure, geometries      345—348
Self-consistent field (SCF) techniques, transition metal electronic structure, overview      339—345
Self-consistent field (SCF) techniques, transition metal electronic structure, second-row transition metals      350—359
Self-consistent field (SCF) techniques, transition metal electronic structure, third-row transition metals      360—365
Self-consistent reaction field (SCRF) technique, CASPT2 and      255—256
Self-diffusion constants, centroid molecular dynamics (CMD)      201—204
Selley, G.      163(60) 216
Semiclassical adiabatic ground-state (SAG) transmissions, potential energy surfaces (PES), intrinsic reaction path (IRP) dynamics      421—422
Semiclassical operators, centroid molecular dynamics (CMD), general correlation functions      197—201
Semiclassical operators, centroid molecular dynamics (CMD), overview      179—180
Semicore electrons, transition metal compounds, CASSCF/CASPT2 techniques      289—290
Semiempirical molecular orbital theory, accuracy and efficiency      711—714
Semiempirical molecular orbital theory, applications      714—718
Semiempirical molecular orbital theory, available approaches      705—711
Semiempirical molecular orbital theory, computational issues      744—747
Semiempirical molecular orbital theory, current theories      719—722
Semiempirical molecular orbital theory, future trends      747—749
Semiempirical molecular orbital theory, general-purpose techniques      722—730
Semiempirical molecular orbital theory, hybrid techniques      737—742
Semiempirical molecular orbital theory, overview      703—704
Semiempirical molecular orbital theory, parametrizations      742—744
Semiempirical molecular orbital theory, specialized techniques      730—737
Semigroup technique, Redfield equation and      87—88 98
Serrano-Andres, L.      222(13) 224(13) 227(13) 247(13) 248(13 36) 253(48) 258(62) 263(13 79 81) 268(36 79) 269(79) 276(13 115—117) 277(115) 280—281(116) 282(36 115—116) 283(13 115—116) 284(13 36 115—116 141) 325—329
Servalli, G.      657(34) 677(34) 699
Severance, D.L.      427(188) 453
Sgamellotti, A.      287(169) 289(169) 329
Shaad, L.J.      263(86—87) 264(83) 327
Shankar, S.      734(180) 754
Shao, B.      638(107) 649
Shavitt, I.      398(33) 448
Sheehy, J.A.      355—356(33) 367(33) 369(33) 385
Shen, M.H.      429(196) 453
Shen, Y.R.      538(42) 647
Shepard, R.      423(167) 452
Sheppard, M.G.      719(103) 720(108) 721(108) 752
Sheridan, J.      280(138) 328
Sherrod, M.J.      741(242) 756
Shi, S.      412(77) 416(77 95) 420(77 95) 449—450
Shi, Y.      736(197) 755
Shida, N.      415(90) 450
Shida, T.      186(140) 284(140) 286(156—158) 329
Shim, I.      354(32) 385
Shirai, T.      531(39) 547(39) 647
Shirley, E.L.      18(42) 19(52) 20(52) 36
Shirmaru, H.      678(86) 700
Short-iterative Arnoldi propagator, Redfield equation solutions      95—98
Siebert, E.L.      631(102) 649
Siebert, E.L.III.      538(43) 572(43) 647
Siegbahn, P.E.M.      222(8 11) 256(11) 287(172) 299(183) 325 329—330 338(8) 340(8 15) 341(8) 350(24) 353—354(15) 355(34) 356(34) 358(37) 362(43) 364(46) 365(48) 366(48—49) 371(24) 372(65—86) 375(88—89) 382(73) 384—387
Silbey, R.      81(45—47) 88(60) 98(60 80) 112(46 60) 113(45—46 97) 116(114) 117(47) 123(114) 132—134
Silicon clusters, QMC calculations and      29—31
Silicon clusters, tight-binding molecular dynamics energy models, defects, surfaces, and hydrogenated systems      680—682
Silicon clusters, tight-binding molecular dynamics energy models, early versions      654—655
Silicon clusters, tight-binding molecular dynamics energy models, liquid simulation      669—674
Silicon clusters, tight-binding molecular dynamics energy models, transferability      696—697
Silicon clusters, tight-binding molecular dynamics energy models, transferable model      655—658
Silver, R.N.      41(6) 74
Silvestrelli, P.L.      26(75) 37
Simandiras, E.D.      712(60) 751
Simons, J.      390(3) 396(26) 447—448
Simpson, W.T.      258(66) 326
SINDO1 approximation, semiempirical molecular orbital theory, general-purpose applications      722—730
SINDO1 approximation, semiempirical molecular orbital theory, overview      710—711
Singh, U.C.      737(226) 739(226) 756
Singh, Y.      202(78) 217
Single-reference techniques, transition metal compound spectroscopy      299—300
Sirois, S.      371(58) 376(58) 386
Site shifts, benzene dimer case study      627—631
Sivia, D.S.      41(6) 74
Skinner, A.J.      654—655(21) 658(21) 679(21) 698
Skinner, J.L.      115(112—113) 134
Sklar, A.L.      727(135) 753
Skodje, R.T.      117(114—115) 417—421(114—115) 450
Skourtis, S.S.      112(95) 134
Slater determinants, diffusion Monte Carlo (DMC) and      7—8
Slater determinants, Fermion sign problem and      23—24
Slater determinants, Green's function Monte Carlo and      8—9
Slater — Jastrow trial function, techniques of      11—15
Slater, J.C.      653(17) 655(17) 693(17) 698
Slichter, C.P.      80(27) 82(27) 83(27) 100(27) 132
Small-polaron transformation, effective bath coordinates (EBCs)      123—126
Small-polaron transformation, effective bath coordinates (EBCs), overview      113
Small-polaron transformation, effective bath coordinates (EBCs), system-bath coupling strength      117—120
Smalley, R.E.      714(67) 718(98) 751—752
Smith, B.J.      401(53) 428(53) 449
Smith, F.T.      416(94) 450
Smith, S.C.      418(126) 424(170) 451—452
Smith, S.F.      427(187) 453
Smithline, S.      747(257) 757
Soep, B.      363(44) 385
Solow, M.A.      717(87) 752
Solution reactions, potential energy surfaces (PES), reaction path calculations      427
Solvation effects, CASPT2 technique, imidazole molecule      282
Solvation effects, CASPT2 technique, organic molecule spectroscopy      255—258
Solvation effects, semiempirical molecular orbital theory      735—737
Song, X.      64(55) 76
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå