|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Redfield equation, stochastic model applications 98—112
Redfield equation, stochastic model applications, long-range electron transfer in DNA/metal complexes 101—112
Redfield equation, stochastic model applications, two-level system in fast stochastic bath 98—100
Redfield relaxation tensor, defined 84—87
Redfield relaxation tensor, factorization 86—87
Redfield relaxation tensor, Redfield equation development and 83—84
Redfield relaxation tensor, system-bath coupling separation 85—86
Redfield, A.G. 80(29—30) 83(29—30) 93(30) 132
Redmon, M.J. 401(42) 408(42) 448
Reduced density matrix theory, condensed-phase system quantum dynamics 80
Reduced density matrix theory, dynamical semigroup approach 87—88
Reduced density matrix theory, factorization 86—87
Reduced density matrix theory, overview 81—82
Reduced density matrix theory, Redfield equation 82—84
Reduced density matrix theory, Redfield relaxation tensor 84—87
Reduced density matrix theory, system-bath coupling separation 85—86
Redundant coordinates, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules 548—552
Reed, A.F. 734(168) 754
Rehmas, A.A. 277(124) 328
Reinhardt, W.P. 538(43) 572(43) 647
Relativistic effective core potentials (RECPs), transition metal compound structure, overview 335
Relativistic effective core potentials (RECPs), transition metal compound structure, second-row transition metals 349—359
Relativistic effective core potentials (RECPs), transition metal compound structure, third-row transition metals 360—365
Relativistic effects, transition metal compound spectroscopy, CASSCF/CASPT2 techniques 301—306
Release node calculations, Fermion sign problem and 23—25
Remington, R.B. 390(6) 447
Remler, D.K. 184(74) 188—189(74) 216
Rendell, A. 222(5 10) 247(5) 254(10) 325
Renormalization of diagrams, centroid density 146—153
Resonantly enhanced multiphoton ionization (REMPI), multiconfigurational second-order perturbation theory (CASPT2), carbonyl compounds 259
Restricted active space SCF (RASSCF), organic molecule spectroscopy 254—255
Restricted path-integral Monte Carlo (RPIMC), summary 10—11
Reynolds, C.A. 732(155—156) 754
Reynolds, P.J. 4(10) 8(19) 9(10) 13(34) 16(37) 19(54) 28(90) 35—37
Rguini, N. 736(205) 739(231) 755—756
Ribbing, C. 302(192) 305(195) 330
Ricca, A. 367(50) 370(54—55) 385—386
Rice, J.E. 712(60) 751
Rice, J.K. 419(138) 423(138) 451
Richard, S. 717(81) 752
Richards, W.G. 732(155—156) 754
Richardson, D.M. 202(78) 217
Rick, S.L. 207(114) 218
Riddell, F.G. 741(240) 756
Ridley, J. 706(27) 711(27) 713(27) 750
Rinaldi, D. 736(205—206) 739(231 233) 755—756
Ringe, D. 738(229) 756
Rios, M.A. 731(143) 753
Riseborough, P. 42(21) 75
Rivail, J.-L. 736(198 204—206) 739(231—233) 755—756
Rizzo, A. 8(83) 27(83) 37
Robiette, A.G. 590(74) 648
Roby, K.R. 726(130—131) 753
Rodriguez, J. 731(143) 753
Roepstorff, G. 136(12) 214
Roesch, N. 309(201) 310(201) 312(201) 316(201) 319(201) 330 736(212) 755
Roethlisberger, U. 29(95) 38
ROHF wavefunctions, CASPT2/CASSCF techniques, isoelectronic ligand field spectra 309—312
ROHF wavefunctions, CASPT2/CASSCF techniques, zeroth-order Hamiltonian 228—232
Rohlfing, C.M. 716(78 80) 751
Rom, N. 412(80) 417(80) 449
Romero-Rochin, V. 83(53) 88(53 61) 132—133
Roncero, O. 78(2) 98(2) 131
Roos, B.O. 221(2) 222(5—13) 224(2 12—13) 225(6—7 12) 226(6—7) 227(12—13 15) 236(6—7) 238(22—23) 239(26) 240(27) 241(7) 243(7 23) 244(15 23 26 28—29) 246(32—33) 247(5 13 34) 248(13 27 35—36 40—41) 249(43) 250(44) 252(33 44 46—47) 253(48) 254(49) 255(59) 257(62) 262(65) 263(13 48 65 79—81) 268(36 79 92—93) 269(33 79 94—95) 270(96) 273(94) 276(13 46 115—116) 277(27 41 127) 280(116) 282(36 115—116) 283(13 115—116) 284(13 36 46 115—116 141) 286(153) 287(22 28—29 170) 288(23) 289(171 173) 290(171) 291(28—29 170) 298(28—29) 300(184) 301(29 170) 302(41) 308(29 41 170) 311(170) 320(23 29) 323(7 23) 324(210—211) 324—331 340(14) 370(56) 3 80(56 99—101) 381 384 386—387
Rosenberg, R.O. 204(89) 217
Rosenbluth, A.W. 42(18) 74
Rosenbluth, M.N. 42(18) 74
Rosi, M. 355—356(33) 367(33 50) 369(33) 385
Roskamp, E.J. 717(93) 752
Rossetti, R. 270—271(100) 327
Rossi, I. 731—732(147) 743(147) 753
Rossi, M.J. 286(155) 329
Rossky, P.J. 78(5 9) 79(5 9) 131
Rotational spectroscopy, three-dimensional algebraic models 601—610
Rotenberg, M. 497(32) 647
Roth, K. 284(145—147) 285(145) 329
Rothstein, S.M. 27(86) 28(92) 37—38
Rotkiewicz, K. 256—257(61) 326
Rovibrator coupling, triatomic molecules 576—598
Rovibrator coupling, triatomic molecules, bent molecules 586—592
Rovibrator coupling, triatomic molecules, linear molecules 592—598
Rubio, M. 269(94—95) 270(96—97) 271—272(97) 277(127) 327—328
Rudin, S.P. 21(61) 57
Ruedenberg, K. 401(50) 407(65 67) 408(69—70) 415(70) 426(70) 430(67 69—70) 448—449
Ruf, B.A. 400(40) 406(40 63) 448—449
Ruiz-Lopez, M.F. 736(198 208) 755
Rullmann, J.C. 737(228) 756
Runge, K.J. 8(20) 12(20) 14(20) 15(20) 27(20) 35
Ruoff, R.S. 715(69) 751
Russegger, P. 396(29) 448
Russo, N. 371(58) 376(58) 386
Russo, T.V. 28(94) 38 96(74) 133
Ruthardt, K. 331 379(92) 387
Ryaboy, V. 412(80) 417(80) 449
Rydberg states, CASPT2 techniques, basis set effects, organic molecule spectroscopy 250—251
Rydberg states, CASPT2 techniques, biphenyl fragments 272—273
Rydberg states, CASPT2 techniques, carbonyl compounds 258—263
Rydberg states, CASPT2 techniques, indole molecule 278—280
Rydberg states, CASPT2 techniques, intruder-state problem 237—244
Rydberg states, CASPT2 techniques, LCPs and PAHs 285—287
Rydberg states, CASPT2 techniques, MCP interacting double bonds 264—269
Rydberg states, CASPT2 techniques, problems and limitations 251—255
Ryu, U. 248(37) 326
Rzepa, H.S. 736(201) 755
Saad, Y. 96(77) 133
Sablijic, A. 258(67) 326
Saddle point geometry, potential energy surfaces (PES) 395—396
Saddle point geometry, reaction paths 430
Sadleg, A.J. 370(56) 380(56) 386
Sadlej, A.J. 222(6 11) 225—226(6) 236(6) 256(11) 325
Saeed, A. 676—677(65) 700
Sagiv, J. 270(105) 272(105) 328
Saito, K. 678(86) 700
Salahub, D.R. 335(2) 371(58) 376(58) 384 386
Salama, F. 286(152 165) 329
Salem, L. 703(2) 720(2) 749
Saleur, H. 72(79) 76
SAM1 parametrization, semiempirical molecular orbital theory 709—711
Samdal, S. 272(107) 328
Sammeth, D.M. 277(125) 328
Sampling techniques, real-time path integration 57—59
Sanche, L. 270(106) 272(106) 328
Sanches-Marin, J. 273(109) 328
Sanderson, R.T. 734(175—176) 754
Sankey, O.F. 684(127) 702
Santry, D.P. 705(16) 750
Sanz, J. 712(60) 751
Sarma, Das. 652(10) 698
Sassenberg, U. 354—355(31) 382(31) 385
Sassetti, M. 68(72) 71(72) 76
Savin, A. 20(45) 36
Sawada, S. 654—655(22) 658(22) 680(22) 694(22) 698
Scalapino, D.J. 43(30) 44(30) 75
Scalettar, R.T. 43(30) 44(30) 75
Schaefer, H.F. 745(254) 757
Schaefer, H.F.III. 337(7) 384 390(4—6) 412(76) 416(96) 417(76) 419(76 96 143) 420(76 96 143) 423(143) 447 449—451
Schatz — Elgersma surfaces, reaction paths, potential energy surfaces (PES) 439—444
Schatz, G.C. 393(13 17) 419(145) 422(17 156 161) 447—448 451—452
Scheer, H. 65(62) 76
Scheiner, S. 419(151) 423(151) 451
Schenter, G.K. 173(63) 180(66) 206(63 96) 207(63 66 96 119) 209(124) 216—217 417(99 113) 427(99 113 183) 450 452
Scherer, G.J. 567(54) 647
Schiffer, M. 68(65) 76
Schlegel, H.B. 393(14) 396(24—25 30—32) 401(30—32 43) 407(66) 408(43) 422(14) 428(43) 430(198) 441(208) 447—449 453
Schleyer, P.v.R. 712(61) 714(61) 722(61) 751
Schlueter, M.A. 17(39) 18(48) 36 655(31) 677(69) 679(31) 680(100) 699
Schmalz, G. 716(77) 751
Schmid, A. 55(43) 68(69) 70(69) 71(69) 75—76
Schmidt, K.E. 4(12) 8(21 30) 11(30) 12(30) 16(21 38) 25(68) 27(81) 35—37
Schmidt, M.W. 263—268(82) 327 401(42) 408(42) 448
| Schmidt, P. 396(26) 448
Schmidt, R. 747(260) 757
Schmidt, W. 286(162) 329
Schoen, G. 70(73) 76
Scholz, M. 703(7) 713(7) 732—733(7) 749
Schor, H.H. 567(65) 648
Schramm, P. 53(40) 75
Schreckenbach, G. 372(63) 386
Schreiner, A.F. 316(204) 330
Schroeder, H. 309(201) 310(201) 312(201) 316(201) 319(201) 330
Schroeder, S. 710(48—49) 713(48) 729(48—49) 731(48—49) 750
Schroedinger equation, molecular spectroscopy 457
Schroedinger equation, quantum Monte Carlo (QMC) and 2
Schroedinger equation, Redfield equation solutions, short-iterative Arnoldi propagator 95
Schroedinger equation, reduced density matrix theory 82
Schroedinger equation, U(2) algebraic model 493—494
Schroedinger equation, U(4) algebraic model 494
Schroedinger equation, vibron models of dynamical symmetry 481—484
Schubert, M. 80(33) 132
Schuetz, M. 286(153) 329
Schueuermann, G. 736(214) 755
Schugar, H.J. 280(134) 328
Schulman, L.S. 136(9) 214
Schulte, K.-W. 710(44) 711(55) 750—751
Schultheiss, M. 20(45) 36
Schulz, J. 706(26) 710(26) 713(26) 722(26) 723(120) 725(26) 750 753
Schulz, M. 661(29) 699
Schulz, R. 711(56) 751
Schwartz, S.D. 411(55—56) 412(78) 417(78 98) 427(78 98) 449—451
Schwarz, H. 717(90) 752
Schweig, A. 710(44 50) 729(50) 750
Schweitzer, K.S. 120(117) 134
Schwenke, D.W. 393(15) 417(119) 419(15) 448 450
Schwerdtfeger, P. 401(51) 449
Schwinger realization, one-dimensional algebraic models, two oscillators, anharmonic coupling 513—514
Schwinger realization, U(2) algebraic model 484—485
Schwinger, J. 484(30) 647
Schyja, V. 747(258) 757
Scotoni, M. 538(48) 571(48) 574(67) 647—648
Scrocco, E. 255(54) 326
Scuseria, G.E. 29(97) 38 320(207) 330 363(53) 369(53) 386 677(83) 700 715(75) 717(89 94—96) 718(94—96) 751—752
Second quantization, Lie algebra 473
Second-order perturbation theory, multiconfigurational techniques, future research 383—384
Second-row transition metals, electronic structure calculations applications 372—379 381—382
Second-row transition metals, electronic structure calculations applications, techniques 348—359
Secular approximation, Redfield relaxation tensor 84—85
Segal, G.A. 703(6) 705(16) 706(29) 713(6) 727(29) 749
Seifert, G. 747(260) 757
Seiler, R. 409(72) 449
Sekiya, M. 8(83) 27(83) 37
Self-consistent field (SCF) techniques, semiempirical molecular orbital theory 703—704 726—730
Self-consistent field (SCF) techniques, transition metal electronic structure, applications 372—379
Self-consistent field (SCF) techniques, transition metal electronic structure, first-row transition metals 365—371
Self-consistent field (SCF) techniques, transition metal electronic structure, geometries 345—348
Self-consistent field (SCF) techniques, transition metal electronic structure, overview 339—345
Self-consistent field (SCF) techniques, transition metal electronic structure, second-row transition metals 350—359
Self-consistent field (SCF) techniques, transition metal electronic structure, third-row transition metals 360—365
Self-consistent reaction field (SCRF) technique, CASPT2 and 255—256
Self-diffusion constants, centroid molecular dynamics (CMD) 201—204
Selley, G. 163(60) 216
Semiclassical adiabatic ground-state (SAG) transmissions, potential energy surfaces (PES), intrinsic reaction path (IRP) dynamics 421—422
Semiclassical operators, centroid molecular dynamics (CMD), general correlation functions 197—201
Semiclassical operators, centroid molecular dynamics (CMD), overview 179—180
Semicore electrons, transition metal compounds, CASSCF/CASPT2 techniques 289—290
Semiempirical molecular orbital theory, accuracy and efficiency 711—714
Semiempirical molecular orbital theory, applications 714—718
Semiempirical molecular orbital theory, available approaches 705—711
Semiempirical molecular orbital theory, computational issues 744—747
Semiempirical molecular orbital theory, current theories 719—722
Semiempirical molecular orbital theory, future trends 747—749
Semiempirical molecular orbital theory, general-purpose techniques 722—730
Semiempirical molecular orbital theory, hybrid techniques 737—742
Semiempirical molecular orbital theory, overview 703—704
Semiempirical molecular orbital theory, parametrizations 742—744
Semiempirical molecular orbital theory, specialized techniques 730—737
Semigroup technique, Redfield equation and 87—88 98
Serrano-Andres, L. 222(13) 224(13) 227(13) 247(13) 248(13 36) 253(48) 258(62) 263(13 79 81) 268(36 79) 269(79) 276(13 115—117) 277(115) 280—281(116) 282(36 115—116) 283(13 115—116) 284(13 36 115—116 141) 325—329
Servalli, G. 657(34) 677(34) 699
Severance, D.L. 427(188) 453
Sgamellotti, A. 287(169) 289(169) 329
Shaad, L.J. 263(86—87) 264(83) 327
Shankar, S. 734(180) 754
Shao, B. 638(107) 649
Shavitt, I. 398(33) 448
Sheehy, J.A. 355—356(33) 367(33) 369(33) 385
Shen, M.H. 429(196) 453
Shen, Y.R. 538(42) 647
Shepard, R. 423(167) 452
Sheppard, M.G. 719(103) 720(108) 721(108) 752
Sheridan, J. 280(138) 328
Sherrod, M.J. 741(242) 756
Shi, S. 412(77) 416(77 95) 420(77 95) 449—450
Shi, Y. 736(197) 755
Shida, N. 415(90) 450
Shida, T. 186(140) 284(140) 286(156—158) 329
Shim, I. 354(32) 385
Shirai, T. 531(39) 547(39) 647
Shirley, E.L. 18(42) 19(52) 20(52) 36
Shirmaru, H. 678(86) 700
Short-iterative Arnoldi propagator, Redfield equation solutions 95—98
Siebert, E.L. 631(102) 649
Siebert, E.L.III. 538(43) 572(43) 647
Siegbahn, P.E.M. 222(8 11) 256(11) 287(172) 299(183) 325 329—330 338(8) 340(8 15) 341(8) 350(24) 353—354(15) 355(34) 356(34) 358(37) 362(43) 364(46) 365(48) 366(48—49) 371(24) 372(65—86) 375(88—89) 382(73) 384—387
Silbey, R. 81(45—47) 88(60) 98(60 80) 112(46 60) 113(45—46 97) 116(114) 117(47) 123(114) 132—134
Silicon clusters, QMC calculations and 29—31
Silicon clusters, tight-binding molecular dynamics energy models, defects, surfaces, and hydrogenated systems 680—682
Silicon clusters, tight-binding molecular dynamics energy models, early versions 654—655
Silicon clusters, tight-binding molecular dynamics energy models, liquid simulation 669—674
Silicon clusters, tight-binding molecular dynamics energy models, transferability 696—697
Silicon clusters, tight-binding molecular dynamics energy models, transferable model 655—658
Silver, R.N. 41(6) 74
Silvestrelli, P.L. 26(75) 37
Simandiras, E.D. 712(60) 751
Simons, J. 390(3) 396(26) 447—448
Simpson, W.T. 258(66) 326
SINDO1 approximation, semiempirical molecular orbital theory, general-purpose applications 722—730
SINDO1 approximation, semiempirical molecular orbital theory, overview 710—711
Singh, U.C. 737(226) 739(226) 756
Singh, Y. 202(78) 217
Single-reference techniques, transition metal compound spectroscopy 299—300
Sirois, S. 371(58) 376(58) 386
Site shifts, benzene dimer case study 627—631
Sivia, D.S. 41(6) 74
Skinner, A.J. 654—655(21) 658(21) 679(21) 698
Skinner, J.L. 115(112—113) 134
Sklar, A.L. 727(135) 753
Skodje, R.T. 117(114—115) 417—421(114—115) 450
Skourtis, S.S. 112(95) 134
Slater determinants, diffusion Monte Carlo (DMC) and 7—8
Slater determinants, Fermion sign problem and 23—24
Slater determinants, Green's function Monte Carlo and 8—9
Slater — Jastrow trial function, techniques of 11—15
Slater, J.C. 653(17) 655(17) 693(17) 698
Slichter, C.P. 80(27) 82(27) 83(27) 100(27) 132
Small-polaron transformation, effective bath coordinates (EBCs) 123—126
Small-polaron transformation, effective bath coordinates (EBCs), overview 113
Small-polaron transformation, effective bath coordinates (EBCs), system-bath coupling strength 117—120
Smalley, R.E. 714(67) 718(98) 751—752
Smith, B.J. 401(53) 428(53) 449
Smith, F.T. 416(94) 450
Smith, S.C. 418(126) 424(170) 451—452
Smith, S.F. 427(187) 453
Smithline, S. 747(257) 757
Soep, B. 363(44) 385
Solow, M.A. 717(87) 752
Solution reactions, potential energy surfaces (PES), reaction path calculations 427
Solvation effects, CASPT2 technique, imidazole molecule 282
Solvation effects, CASPT2 technique, organic molecule spectroscopy 255—258
Solvation effects, semiempirical molecular orbital theory 735—737
Song, X. 64(55) 76
|
|
|
Ðåêëàìà |
|
|
|