Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Soto, M.R.      417(107—108) 419(140) 450—451
Soukoulis, C.M.      654(24) 656(24) 658(24) 669(24) 677(66) 679—680(24) 699
Spangler, L.H.      277(125) 328
Specific reaction parameters (SRP), semiempirical molecular orbital theory, neglect of diatomic differential overlap (NDDO) approximation      731—737
Spectral density, quantum Monte Carlo analysis, spin-boson models      49—51
Spectrum-generating algebra (SGA), defined      477
Spherical tensor operators, U(4) algebraic model      496—511
Spicci, M.      139(33 36—37) 215
Spin-boson systems, canonical transformation of system-bath coupling strength, adiabatic techniques      120—121
Spin-boson systems, canonical transformation of system-bath coupling strength, effective bath coordinates (EBCs)      120—126
Spin-boson systems, canonical transformation of system-bath coupling strength, overview      113—115
Spin-boson systems, canonical transformation of system-bath coupling strength, small-polaron transformations      117—120
Spin-boson systems, canonical transformation of system-bath coupling strength, variational transformations      115—117
Spin-boson systems, real-time QMC for      48—59
Spin-boson systems, real-time QMC for, model parameters      49—51
Spin-boson systems, real-time QMC for, path integral discretization      51—54
Spin-boson systems, real-time QMC for, quasiclassical degrees of freedom, elimination      54—57
Spin-boson systems, real-time QMC for, sampling techniques      57—59
Spin-boson systems, Redfield equation model      80—81
Spin-orbit coupling, CASPT2/CASSCF techniques, relativistic effects in transition dihalides      305—307
Spin-orbit coupling, CASPT2/CASSCF techniques, relativistic effects in transition dihalides, third-row transition metals      361—365
Spin-orbit coupling, CASPT2/CASSCF techniques, relativistic effects in transition dihalides, transition metal electronic structure, second-row transition metals      349—359
Spiro, T.G.      280—282(135) 328
Spohn, H.      87(57) 98(57) 132
Sprik, M.      181(70) 184—185(70) 216
Spurious modes, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules      548—552
Srivastava, G.P.      652(1) 698
Staley, S.W.      263(85 88) 264(88—89) 265(88) 267(85) 327
Standard matrix diagonalization, tight-binding molecular dynamics (TBMD)      662—663
Stationary-phase Monte Carlo (SPMC), blocking strategy      46—47
Stationary-phase Monte Carlo (SPMC), overview of      42—43
Statistical mechanical perturbation theory, condensed-phase system quantum, dynamics      80
Steckler, R.      393(15) 401(42) 408(42) 417(119) 418(124) 419(15 147) 422(124 155 157) 423(157) 448 450—452
Steepest descent reaction paths, potential energy surfaces (PES)      397—400
Stegmann, R.      371(61) 386
Steinbinder, D.      48(35) 75
Steiner, M.M.      21(61) 37
Steinke, T.      736(213) 755
Stevens, J.E.      720(119) 753
Stevens, W.J.      17(40) 36
Stewart, J.J.P.      422(155) 452 703(13—14) 706(21—22) 709(21—22) 713(13—14 21—22 65) 721—722(21—22) 723(21) 724(22) 728(21—22) 731(21—22) 743(22) 744(13 22) 745(248—249) 747(21 264) 749—751 757
Stich, I.      670—673(47) 699
Stilling — Weber (SW) potential, tight-binding molecular dynamics (TBMD), anharmonic effects in solids      668—669
Stilling — Weber (SW) potential, tight-binding molecular dynamics (TBMD), liquid silicon simulation      670—674
Stillinger, F.H.      652(3) 698
Stilz, H.U.      65(62) 76
Stochastic baths, Redfield equation solutions      93—94
Stochastic baths, Redfield equation solutions, long-range electron transfer in DNA/metal complexes      101—112
Stochastic baths, Redfield equation solutions, two-level system applications      98—100
Stoeckel, F.      567(56) 647
Stokbro, K.      680(110 112) 681(112) 695(110 112) 701
Stoll, H.      17(41) 36
Stone — Wales pyracyclene rearrangement, semiempirical molecular orbital theory, fullerene chemistry      717—718
Stone, A.J.      712(60) 717—718(97) 734(171) 751—752 754
Stoneham, A.M.      70(76) 76
Storer, J.W.      734—735(166) 736(166 219—220) 754 756
Stouch, T.R.      734(184) 755
Straatsma, T.P.      734(163) 754
Strang, G.      89(63) 133
Stratonovitch — Hubbard transformation, Fermion sign problem and      26
Stratt, R.M.      120(117) 134 163(61) 216
Straus, J.B.      140(50) 207(50) 210—211(50) 216
Strauss, M.      652(8) 698
Streater, R.F.      466(16) 646
Stretching motions, algebraic models, computer routines      641—644
Stretching motions, algebraic models, one-dimensional algebraic models, Majorana symmetry adaptation, multiple oscillators      540—547
Stretching motions, algebraic models, one-dimensional algebraic models, mass scaling laws and symmetry reduction      554—556
Stretching motions, algebraic models, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules      547—552
Stretching motions, algebraic models, triatomic molecules, rovibrator coupling      585—586
Strey, G.      414(84) 423(84) 432(84) 449 631(101) 649
Strich, A.      375(89) 387
Strickland, E.H.      277(123) 279(123) 328
Strout, D.L.      29(97) 38 717—718(94 96) 752
Stuchebrukhov, A.A.      64(55) 76 206(95) 217
Su, M.-D.      712(60) 751
Suarez, A.      88(60) 98(60) 112(60) 113(97) 133—134
Subbaswamy, K.R.      679(95—96) 701
Subramaniam, R.P.      8(21) 16(21) 35
Sudarshan, E.C.G.      87(54) 98(54) 132
Sugar, R.L.      43(30) 44(30) 75
Suhm, M.A.      435(206) 453
Sun, H.      720(104—105 108—109 114) 721(104 108—109 114) 752
Sun, J.-Q.      401(50) 448
Sun, Y.-C.      207(113) 218
Sun, Z.      13(34) 36
Sundbom, M.      207—272(104) 274—275(104) 327
Sunderlin, L.S.      367(51) 369(51) 385
Sung, H.N.      270—271(99) 327
Surface-hopping techniques, condensed-phase system quantum dynamics      78—79
Surjan, P.R.      739(232) 756
Survival amplitude, one-dimensional algebraic models, Fermi resonances, anharmonic couplings      574
Sutin, N.      59(47) 75 104(91) 111(91) 112(91 94) 133
Sutton, A.P.      680(102) 701
Suzuki, K.      670(46) 699
Suzuki, S.      678(86) 700
Svensson, M.      338(8) 340(8 15) 341(8) 350(24) 353—354(15) 358(37) 362(43) 365(48) 371(24) 372(65—66 68—71 81) 375(88) 384—387
Swanson, M.S.      136(11) 214
Swiderek, P.      270(106) 272(106) 328
Symmetry operations      see also "Dynamical symmetries"
Symmetry operations, algebraic models and      458—460
Symmetry operations, one-dimensional algebraic models, electromagnetic transition intensities      563—566
Symmetry operations, one-dimensional algebraic models, mass scaling laws and symmetry reduction      552—556
Symmetry operations, one-dimensional algebraic models, multiple oscillators, Majorana symmetry adaptation      536—547
Symmetry operations, one-dimensional algebraic models, two oscillators, anharmonic coupling      522—531
Symmetry operations, reaction paths, potential energy surfaces (PES)      428—430
Symmetry operations, reaction paths, potential energy surfaces (PES), invariant theory surfaces      433
Symmetry operations, rovibrator coupling, bent triatomic molecules      588—592
System-bath coupling, canonical transformations to reduce strength      112—127
System-bath coupling, canonical transformations to reduce strength, adiabatic techniques      120—121
System-bath coupling, canonical transformations to reduce strength, effective bath coordinate (EBC)      121—127
System-bath coupling, canonical transformations to reduce strength, overview of strategy      112—113
System-bath coupling, canonical transformations to reduce strength, small-polaron transformation      117—120
System-bath coupling, canonical transformations to reduce strength, spin-boson Hamiltonian      113—115
System-bath coupling, canonical transformations to reduce strength, variational optimization      115—117
System-bath coupling, correlation functions      129—131
System-bath coupling, Marcus electron transfer, DNA/metal complex      111—112
System-bath coupling, Redfield equation solutions, bath models      89—94
System-bath coupling, Redfield equation solutions, classical bath      90—93
System-bath coupling, Redfield equation solutions, DNA/metal complex long-range electron transfer      103—112
System-bath coupling, Redfield equation solutions, harmonic oscillator bath      89—90
System-bath coupling, Redfield equation solutions, overview      88—89
System-bath coupling, Redfield equation solutions, stochastic bath      93—94
System-bath coupling, Redfield relaxation tensor, factorization      86—87
System-bath coupling, Redfield relaxation tensor, overview      84
System-bath coupling, Redfield relaxation tensor, separation of      85—86
Szafran, M.      736(200 203) 755
T-shaped algebraic model of benzene dimer      627—631
Takada, T.      720(110—111) 752
Takasu, M.      41(13) 74
Tal-Ezer, H.      88(59) 98(59 79) 132—133
Talkner, P.      60(50) 76 79(12) 131 204(84) 206(84) 217
Talmi, I.      497(31) 647
Tanaka, S.      32(101) 38
Tang, M.S.      695(138) 702
Tapia, O.      255(53) 326
Taylor expansion, centroid density, diagrammatic representation      144—146
Taylor expansion, centroid molecular dynamics (CMD), Kubo-transformed position correlation function      170—175
Taylor expansion, multiconfigurational second-order perturbation theory (CASPT2)      223—224
Taylor expansion, reaction paths, potential energy surfaces (PES), higher-order interpolated surfaces      442—444
Taylor expansion, reaction paths, potential energy surfaces (PES), interpolation surfaces      434—435
Taylor expansion, reaction paths, potential energy surfaces (PES), intrinsic reaction paths and natural collision coordinates      409—412
Taylor expansion, reaction paths, potential energy surfaces (PES), overview      392
Taylor expansion, transition metal electronic structure      340—341
Taylor, H.      396(26) 448
Taylor, P.L.      30(98) 31(98) 38
Taylor, P.R.      248(39) 326 340(13) 384 390(9) 447
Taylor, R.      678(88) 700
Taylor, S.      259(77) 327
Teller, A.H.      42(18) 74
Teller, E.      42(18) 74
Teller, S.      483(24) 646
Temperature dependence, DNA/metal complex long-range electron transfer      106—109
ten Haaf, D.F.B.      21(62—63) 37
Teng, H.H.-I.      284(144) 329
Tenno, S.      255(50) 326
Terryn, B.      736(198 208) 755
Tersoff, J.      652(4—5) 698
Teter, M.P.      684—685(124) 702
Tetratomic molecules, algebraic models      615—625
Thakkar, A.J.      28(91) 38
Thakur, S.N.      258—259(71) 327
Thatcher Borden, W.      324(209) 331
Thermal factor, Redfield equation solutions, two-level systems in stochastic baths      100
Thery, V.      739(233) 756
Thiel, W.      703(12) 705(17) 706(19—20 33—38) 707(19) 708(19) 709(12 42—43) 710(12 20 47—50) 712(58) 713(12 20 36 43 47 63—64) 715(72 74) 717(81 86) 721(19—20) 722(19—20 33—36) 723(19—20 33—36 39 121) 724(34 36 43) 725(12 33 36—38 123) 727(34) 728(19—20 34) 729(17 33—38 47—50) 730(19) 731(19 37 48—49) 734—735(160) 739(234) 740(160) 741(234) 743(19 37) 744(19—20) 745(74 253) 746(72 121) 747(255 263) 749—753 756—757
Thilgen, C.      678(87) 700 716(79) 718(79) 751
Third-row transition metals, electronic structure calculations      359—365 383—384
Thirumalai, D.      5(15) 35 40(4) 41(4 10) 74 79(21) 131 136—138(17) 142(17) 153(17) 155(17) 181—182(17) 184—185(75) 201—202(75) 208(17) 212(17) 215 217
Thole, B.T.      737(228) 740(237) 756
Thompson, K.C.      429(191) 431(191) 433(191 204) 437—440(204) 442(209) 445(191 210) 453
Three-dimensional algebraic models, diatomic molecules, U(4) algebraic model      494
Three-dimensional algebraic models, polyatomic molecules      575—625
Three-dimensional algebraic models, polyatomic molecules, electromagnetic transition intensities      610—615
Three-dimensional algebraic models, polyatomic molecules, Fermi resonances, anharmonic coupling      598—601
Three-dimensional algebraic models, polyatomic molecules, overview      575—576
Three-dimensional algebraic models, polyatomic molecules, rotational spectroscopy      601—610
Three-dimensional algebraic models, polyatomic molecules, tetratomic molecules      615—625
Three-dimensional algebraic models, polyatomic molecules, triatomic molecules, rovibrator coupling      576—598
Throckmorton, L.      706(18) 750
Tight-binding molecular dynamics (TBMD), algorithms and force calculations      660—666
Tight-binding molecular dynamics (TBMD), algorithms and force calculations, Car — Parrinello algorithm      664—665
Tight-binding molecular dynamics (TBMD), algorithms and force calculations, electronic temperature      665—666
Tight-binding molecular dynamics (TBMD), algorithms and force calculations, O(N) algorithms for electronic structure calculations      683—689
Tight-binding molecular dynamics (TBMD), algorithms and force calculations, standard matrix diagonalization      662—664
Tight-binding molecular dynamics (TBMD), algorithms and force calculations, structural optimization genetic algorithm      689—693
Tight-binding molecular dynamics (TBMD), applications      666—682
Tight-binding molecular dynamics (TBMD), applications, amorphous structure simulations      674—677
Tight-binding molecular dynamics (TBMD), applications, anharmonic effects in solids      667—669
Tight-binding molecular dynamics (TBMD), applications, clusters and buckyballs      677—679
Tight-binding molecular dynamics (TBMD), applications, defects, surfaces and hydrogenate systems      679—682
Tight-binding molecular dynamics (TBMD), applications, simulation of liquids      669—674
Tight-binding molecular dynamics (TBMD), current research      682—695
Tight-binding molecular dynamics (TBMD), energy models      654—660
Tight-binding molecular dynamics (TBMD), energy models, early versions      654—655
Tight-binding molecular dynamics (TBMD), energy models, models beyond two-center approximation      693—695
Tight-binding molecular dynamics (TBMD), energy models, transferable carbon model      658—660
Tight-binding molecular dynamics (TBMD), energy models, transferable silicon model      655—658
Tight-binding molecular dynamics (TBMD), overview      651—654
Tight-binding molecular dynamics (TBMD), transferability issues      695—697
Tildesley, D.J.      439(207) 453
Time correlation functions      see also "Imaginary-time" "Position "Real-time
Time correlation functions, centroid density, general correlation functions      165—166
Time correlation functions, centroid density, overview      140
Time correlation functions, centroid density, position time correlation functions      164—165
Time correlation functions, centroid molecular dynamics (CMD), general time correlation functions      176—180
Time correlation functions, centroid molecular dynamics (CMD), position and velocity time correlation, functions      175—176
Time propagation, Redfield equation solutions      94—98
Time-dependent analysis, DNA/metal complex long-range electron transfer, Redfield equation solutions      104—106
Time-dependent analysis, one-dimensional algebraic models, Fermi resonances, anharmonic couplings      574
Toda, N.      168(62) 216
Tognetti, V.      136(21—22) 139(21—22 29—40) 141(21—22) 143(21—22) 146(21—22) 150(21—22) 154—155(34) 159(34 40) 164(21—22) 182(21—22) 186(21—22) 188(21—22) 190(76) 207(34) 212(21—22) 213(21—22) 215 217
Tomanek, D.      655(31) 677(69 85) 679(31) 699—700
Tomas, F.      273(109) 328
Tomasi, J.      255(54) 326
Topaler, M.      41(12) 52(12) 74 79(16 18—20) 104(16 20) 113(20) 131 207(101) 217
Torrie, G.M.      209(123) 218
Trajectory calculations, reaction path applications, interpolated surfaces      439—442
Trajectory calculations, reaction path applications, potential energy surfaces (PES)      425—426
Transient estimate calculations, Fermion sign problem      23—25
Transition dihalides, transition metal compound spectroscopy, CASSCF/CASPT2 techniques      301—306
Transition intensities      see "Electromagnetic transition intensities"
Transition metal compounds, electronic spectroscopy near degeneracy effects and active space selection      290—301
Transition metal compounds, electronic spectroscopy, CASPT2/CASSCF techniques      287—290
Transition metal compounds, electronic spectroscopy, charge transfer states in chromium dimers      312—316
Transition metal compounds, electronic spectroscopy, chromium dimer      320—322
Transition metal compounds, electronic spectroscopy, cyanide and carbonyl ligands      306—309
Transition metal compounds, electronic spectroscopy, ligand field spectrum, isoelectric species      309—312
Transition metal compounds, electronic spectroscopy, nickel compound spectra      316—320
Transition metal compounds, electronic spectroscopy, relativistic effects for transition dihalides      301—306
Transition metal compounds, electronic structure calculations, applications      371—382
Transition metal compounds, electronic structure calculations, energy accuracy      337—345
Transition metal compounds, electronic structure calculations, first-row transition metals      365—371
Transition metal compounds, electronic structure calculations, geometric calculations      345—348
Transition metal compounds, electronic structure calculations, overview      333—336
Transition metal compounds, electronic structure calculations, second-row transition metals      348—359
Transition metal compounds, electronic structure calculations, third-row transition metals      359—365
Transition metal compounds, quantum Monte Carlo (QMC) techniques and      28—29
Transition metal compounds, semiempirical molecular orbital theory      725—730
Transition-state theory (TST), potential energy surfaces (PES), reaction path dynamics      417—418
Transition-state theory (TST), transition metal electronic structure, geometries      345
Transition-state theory (TST), transition metal electronic structure, second-row transition metals      352—359
Tremmel, J.      305(193) 330
Trial wavefunctions, Monte Carlo techniques and      11—15
Triatomic molecules, one-dimensional algebraic models      511—513
Triatomic molecules, three-dimensional algebraic models, bent molecules      586—592
Triatomic molecules, three-dimensional algebraic models, linear molecules      592—598
Triatomic molecules, three-dimensional algebraic models, rovibrator coupling      576—598
Triple-zeta plus polarization (TZP), organic molecule spectroscopy      249—251
Troe, J.      417(97) 450
Trotter slice configuration, quantum Monte Carlo analysis      43—44
Troullier, N.      671(50) 699
Trucks, G.S.      744(247) 757
Trucks, G.W.      27(87) 37 339(12) 341(12 17) 384
Truhlar, D.G.      204(83) 206(83) 217 255(57) 326 390(2) 391(11) 393(15) 397(11) 398(37) 401(42 49) 408(42 49) 415(91) 417(11 99—100 106 110 112 114—120) 418(124—125) 419(11 15 106 112 114—116 125 128—134 136 139 141—142 144—147 149—150) 420(114—115 132) 421 422(106 110 124 154—155 157) 423(106 110 112 139 142 157 163—164 169) 427(99 182—183) 447—448 450—452 731(144—147) 732(144—148) 734(166) 735(166 185) 736(166 185 215—220) 737(221) 743(147) 753—756
Truong, T.N.      417(101 112) 418(124) 419(149—150 152) 422(124 154—155) 423(152 169) 450—452 731—732(144) 753
Tryptophan spectroscopy, multiconfigurational second-order perturbation theory (CASPT2)      277—280
Tschinke, V.      371(62) 386
Tseng, S.      730—731(139) 753
Tsokos, E.      287(171) 289—290(171) 291 301(177) 308(177) 316(177) 329—330
Tsu, R.      668—669(43) 699
Tucker, S.C.      393(15) 417(120) 419(15 150) 448 450—451
Tuckerman, L.S.      96(74) 133
Tuckerman, M.      182(71) 216
Tully, J.C.      78(3) 79(3) 95(3) 131
Tunneling corrections, potential energy surfaces (PES), variational transition-state theory (VTST)      419—422
Tunneling corrections, real-time QMC, spin-boson dynamics      48—49
Tunneling corrections, stationary-phase Monte Carlo (SPMC)      42—43
Tunneling corrections, stationary-phase Monte Carlo (SPMC), blocking strategy      47—58
TURBOMOLE program, semiempirical molecular orbital calculations      712—714
Turro, N.J.      101(81—83) 111(83) 133
Two-center approximation, tight-binding molecular dynamics (TBMD)      693—695
Two-center two-electrons integrals, semiempirical molecular orbital theory      722—723
U(2) algebraic model, dynamical symmetry      484—494 494—511
U(4) algebraic model, dynamical symmetry      494—511
Ubbelohbe, A.R.      670(49) 699
Ugarte, D.      715(76) 751
Ulstrup, J.      60(48) 75
Ultraviolet (UV) spectroscopy, CASPT2 technique, interacting fragments      269—276
Ultraviolet (UV) spectroscopy, CASPT2 technique, MCP interacting double bonds      263—269
Umrigar, C.J.      6(16) 8(20) 11(16) 12(16 20) 13(16) 14(20) 15(20) 27(16 20) 35
Unipotential reference propagator, centroid density, renormalization of diagrams      149
Urban, M.      8(27) 11(27) 28(89) 29(89) 36—37 222(11) 256(11) 325 710(46) 750
Ursenbach, C.      371(62) 386
Ushio, J.      371(58) 376(58) 386
Vaia, R.      139(29—32 34—40) 154—55(34) 157(40) 159(34 40) 190(76) 207(40) 215 217
Valence coordinates, limits of reaction paths and      431—432
Valence states, CASPT2 technique, carbonyl compounds      259—263
Valence states, CASPT2 technique, indole molecule      278—280
Valence states, CASPT2 technique, MCP interacting double bonds      264—269
Valence states, CASPT2 technique, organic molecule spectroscopy limitations      252—255
Valence states, CASPT2 technique, semiempirical molecular orbital theory      719—722
Valleau, J.P.      58(46) 75 209(123) 218
Valley ridge inflection points, reaction paths, PES analysis      407—408
Valtazanos, P.      407(67) 408(69—70) 415(70) 426(70) 430(69—70) 449
van Bemmel, H.J.M.      21(62—63) 37
Van Duijnen, P.T.      737(228) 756
van Duijneveldt, F.B.      248(42) 326
van Isacker, P.      459(9) 461(10) 513(10) 538(10) 646
Van Kampen, N.G.      83(48) 87(48) 93(48) 132
Van Leeuwen, J.M.J.      21(62—63) 37
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå