Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Koehler, H.-J.      703(7) 713(7) 732—733(7) 749
Koelmel, C.      712(62) 751
Koerting, C.F.      309(200) 312(200) 330
Koga, N.      336(5) 371—372(5) 384
Kohler, B.E.      274(110 112 218) 275(110 112) 328 331
Kohyama, M.      680(103—105) 701
Kolb, M.      717(81) 743(245) 752 756
Kollman, P.A.      734(173 182—183) 737(226) 739(226) 754 756
Komornicki, A.      396(28) 448
Kondo parameter, Brownian particle diffusion, real-time QMC techniques      71—72
Koopmans theorem, multiconfigurational second-order perturbation theory (CASPT2)      231—232
Koput, J.      736(203) 755
Kosloff, R.      78(1—2) 88(58—59) 98(1—2 59 78—79) 131—133 567(65) 648
Kossakowski, A.      87(54) 98(54) 132
Koster, G.F.      653(17) 655(17) 693(17) 698
Koszykowski, K.      419(148) 451
Kotzian, M.      309(201) 310(201) 312(201) 316(201) 319(201) 330
Kozlowski, P.M.      228(17) 229(18) 325
Kraetschmer, W.      714(66) 751
Kraiem, H.B.      567(56) 647
Kraka, E.      391(10) 447
Kraus, W.      426(181) 430(181) 452
Krause, H.      627(99) 648
Krauss, M.      17(40) 36
Krogh-Jespersen, K.      280(134) 328
Kroto, H.W.      601(79) 648 678(88) 700 714(67) 751
Krusic, P.J.      717(84) 752
Krylov space, Redfield equation solutions, short-iterative Arnoldi propagator      95—98
Kubo, R.      168(62) 216
Kubo-transformed position correlation function, centroid molecular dynamics (CMD), justification for      169—175
Kubo-transformed position correlation function, centroid molecular dynamics (CMD), overview      168—169
Kuehnle, W.      256(60) 326
Kuharski, R.A.      91(64) 92(64) 133 207(102) 217
Kumar, C.V.      101(81) 133
Kumei, S.      604(81) 648
Kundu, T.      258—259(71) 327
Kuntz, P.J.      78(4) 131 430(197) 453
Kupperman, A.      309(200) 312(200) 330 398(37) 448
Kusnesov, D.      645(118) 649
Kutzelnigg, W.      727(134) 753
Kuzmany, H.      677(94) 701
Kwon, I.      654(24) 656(24) 658(24) 669(24) 679—680(24) 699
Kwon, Y.      14(99) 23(66) 24(99) 32(99) 33(103) 37—38
Laasonen, K.      567(15) 652(15) 669(15) 695
Ladder operators, Lie algebra      474—479
Ladder operators, one-dimensional algebraic models, electromagnetic transition intensities      558—566
Lafont, A.G.      417(110) 422—423(110) 450
Lagrangian equations, centroid molecular dynamics (CMD), centroid force computation      186—190
Lagrangian equations, centroid molecular dynamics (CMD), position time correlation functions      192—196
Lagrangian equations, tight-binding molecular dynamics (TBMD), Car — Parrinello algorithm      664—665
Laidig, K.E.      712(60) 751
Laidler, K.J.      393(19) 448 409(73) 449
Laird, B.B.      115(112—113) 134
Lamb, L.D.      714(66) 751
Lami, H.      278(129 132) 279(129) 328
Lanczos algorithm, Redfield equation solutions, short-iterative Arnoldi propagator      94—98
Landman, U.      670(48) 699
Langhoff, S.R.      221(1 3) 324 336(6) 339(11) 355—356(33) 367(33) 369(33) 371(6) 384—385
Lannin, J.S.      676(64) 700
Laria, D.      207(110) 218
Lastri, A.      18(49) 19(49) 36
Lauderdale, J.G.      418(124) 422(124 155) 451—452
Lauer, G.      710(44) 711(55) 750—751
Lawande, S.V.      136(16) 215
Le Forestier, C.      78(2) 98(2) 131
Least-squares algorithms, semiempirical molecular orbital theory, parametrization      743—744
Lebedenko, D.      679(96) 701
Lee, C.      342(19) 384 747(257) 757
Lee, D.      80(34) 132
Lee, J.M.      681(117) 701
Lee, M.A.      8(21) 16(21) 25(68) 35 37
Lee, T.J.      324(211) 331
Lee, Y.H.      681(117) 701
Lee, Y.S.      720(107 114) 721(114) 752
Lee, Y.T.      538(42) 647
Leforestier, C.      128(118—119) 134
Legare, D.A.      28(92) 38
Leggett, A.J.      48(33—34) 49(34) 75 114(104—107 111) 134
Lehmann, K.K.      567(54) 590(73) 647—648
Leinhos, U.      256(60) 326
Lemus Casillas, R.      578(70) 648
Lemus, R.      538(41) 597(76) 614(91) 617(92) 645(109—112) 647—649
Lennard — Jones fluid, centroid molecular dynamics (CMD), self-diffusion constants      201—202
Leopold, D.G.      331 379—380(94) 387
Lersch, W.      65(58) 76
Lester, W.A.Jr.      4(10) 8(19) 9(10) 13(34) 16(37) 19(54) 23(65) 26(77) 28(90) 35—37
Leung, K.      72(78) 76
Level-shift (LS) correction, CASPT2/CASSCF techniques, chromium dimer spectroscopy      320—321
Level-shift (LS) correction, CASPT2/CASSCF techniques, multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem      239—246
Lever, A.B.P.      295(179) 309(179) 316(205) 330
Levesque, D.      4(4) 7—8(4) 35
Leviatan, A.      611(89—90) 613(90) 645(111) 648—649
Levine, R.D.      461(11) 484(28) 531(38) 564(51) 567(64—65) 576(69) 586(69) 612(11) 626(11) 633(11 106) 636(11) 638(106) 645(113) 646—649
Levitt, M.      737(225) 739(225) 756
Levy, M.      734(177) 754
Levy, R.M.      79(22) 80(42) 84(42) 86(42) 91(42) 93(42) 128(42) 129(42) 131—132
Li, D.      113(98) 128(98) 134 207(107) 217
Li, F.      676(64) 700
Li, J.      372(63) 386
Li, Q.M.      677(67) 681(67 116) 694(116) 700—701
Li, X.-P.      18(50) 32(50) 36 651(51) 684—685(120) 699 702
Li, Z.      423(165) 452
Lie algebra G, dynamical symmetries      470—471
Lie algebra, algebraic models and computer routines      639—644
Lie algebra, dynamical symmetries      468—479
Lie algebra, nuclear physics and      458—460
Lie algebra, one-dimensional algebraic models, overview      511—513
Lie algebra, one-dimensional algebraic models, two oscillators, anharmonic coupling      513—531
Lie algebra, rovibrator coupling, triatomic molecules      578—586
Lie algebra, U(4) algebraic model      496—497 501—511
Ligand interactions, CASPT2/CASSCF techniques, cyanide and carbonyl ligands      306 308—309
Ligand interactions, CASPT2/CASSCF techniques, cyanide and carbonyl ligands, nickel compound spectra      316—320
Ligand interactions, CASPT2/CASSCF techniques, cyanide and carbonyl ligands, relativistic effects in transition dihalides      302—304
Ligand interactions, CASPT2/CASSCF techniques, transition metal compound spectroscopy, near-degeneracy effects and active space selection      294—301
Ligand interactions, CASPT2/CASSCF techniques, transition metal electronic structure, first-row transition metals      367—371
Ligand interactions, CASPT2/CASSCF techniques, transition metal electronic structure, second-row transition metals      357—359
Light, J.C.      95(73) 97(73) 133
Lii, J.H.      739(235—236) 756
Lim, S.J.      371(59) 386
Limm, W.      322(216) 331
Lin, L.-J.      263(84) 327
Lin, S.W.      128(120) 134
Lin, Y.-P.      423(164) 452
Lindblad, G.      87(55) 98(55) 132
Lindh, R.      222(11) 248(36—38) 255(59) 256(11) 257(62) 268(36 92) 282(36) 284(36 141) 291(176) 324(208) 325—329 331
Line integral, distinguished coordinate reaction path      404 406—407
Linear conjugate polyenes (LCP), CASPT2 analysis      284—288
Linear harmonic oscillator (LHO) reference system, centroid density, diagrammatic representation      143—146
Linear harmonic oscillator (LHO) reference system, centroid density, numerical examples      161—162
Linear harmonic oscillator (LHO) reference system, centroid density, renormalization of diagrams      149—153
Linear harmonic oscillator (LHO) reference system, centroid molecular dynamics (CMD), harmonic theory and      164—166
Linear harmonic oscillator (LHO) reference system, centroid molecular dynamics (CMD), real-time correlation functions      167—169
Linear triatomic molecules, rotational spectroscopy      603—610
Linear triatomic molecules, rovibrator coupling      592—598
Link atoms, semiempirical molecular orbital theory, quantum mechanics/molecular mechanical hybrids      739—742
Linse, P.      222(8) 325
Liotard, D.A.      745(252) 747(261—262) 757
Liouville space, Redfield equation, development and      82—84
Liouville space, Redfield equation, time propagation      94—98
Liouville space, Redfield relaxation tensor factorization      87
Liouville space, reduced density matrix theory      82
Lipinski, J.      256—257(61) 326
Lipkin, N.      78(2) 98(2) 131
Lipscomb, W.N.      706(18) 750
Liu, B.      248(37—38) 291(176) 320(206) 326 329—330 379(95) 387
Liu, H.      736(196—197) 755
Liu, R.      423(165) 452
Liu, S.      139(27—28) 215
Liu, X.      716(77) 751
Liu, Y.      417(110) 422—423(110) 450
Liu, Y.-P.      417(99) 418(124) 419(150) 422(124 154—155) 427(99) 450—452 731—732(146) 753
Liu, Z.      25(71) 57
Lluch, J.M.      406(64) 419(64) 449
Lo, D.H.      706(32) 750
Lobaugh, J.      140(46—47) 193(77) 197(47) 207(46 77 108) 208(77 108) 209(77) 210(46) 215 217
Local density approximation (LDA), clusters, quantum Monte Carlo (QMC) calculations      29—31
Local density approximation (LDA), clusters, tight-binding molecular dynamics energy models      677—679
Local density approximation (LDA), many-body wavefunction      3
Local density approximation (LDA), nonlocal pseudopotentials      17—18
Local density approximation (LDA), tight-binding molecular dynamics (TBMD), anharmonic effects in solids      667—669
Localized molecular orbitals, semiempirical molecular orbital theory      745—747
Lockwood, G.      278—279(128) 328
Loewdin basis, semiempirical molecular orbital theory      720—722
Loh, E.Y.      43(30) 44(30) 75
Lombardi, J.R.      278(131) 328
Lombardi, M.      645(108) 649
Long, X.      747(257) 757
Lorentzon, J.      252(46—47) 276(46) 284(46) 326
Louie, S.G.      12(31) 14(31) 19(31 51) 32(51) 36
Louisell, W.H.      80(32) 115(32) 129(32) 132
Lowedin, P.O.      726(128—129) 753
Lu, D.      417(110) 418(124) 419(150) 422(110 124 154—155) 423(110) 450—452 731—732(146) 753
Lubich, L.      574(67) 648
Lubman, D.M.      277(126) 328
Ludwig, A.W.W.      72(79) 76
Luedtke, W.D.      670(48) 699
Luque, F.J.      732(150—153) 734(174) 736(209) 754
Lynch, D.L.      207(114) 218
Lynch, E.D.      567(60) 647
Lynch, G.C.      393(15) 418(124) 419(15 150) 422(124 154—155) 448 451—452
Ma, N.L.      403(56—57) 405(56—57) 406(56) 415(56) 422(56—57 165) 423(56) 426(56—57) 433(57) 449 452
Macchi, A.      139(29—30) 215
Machado, F.B.      280(137) 328
Madden, P.A.      184(74) 188—189(74) 216
Madelung, O.      661(29) 699
Madura, J.D.      427(186) 453
Magerl, A.      48(35) 75
Magnuson, A.W.      419(132) 420(132) 451
Magro, W.R.      10(25) 36
Mahan, G.D.      113(102) 117(102) 119(102) 134
Maheshwari, A.      136(14) 215
Maier, J.P.      284(149—150) i29
Maigret, B.      739(233) 756
Majorana operators, algebraic models and computer routines      639—644
Majorana operators, algebraic models and computer routines, benzene dimer case study      629—631
Majorana operators, one-dimensional algebraic models, electromagnetic transition intensities      560—566
Majorana operators, one-dimensional algebraic models, Fermi resonances, anharmonic couplings      568—574
Majorana operators, one-dimensional algebraic models, mass scaling laws and symmetry reduction      552—556
Majorana operators, one-dimensional algebraic models, multiple oscillators      534—556
Majorana operators, one-dimensional algebraic models, symmetry adaptation with      536—547
Majorana operators, one-dimensional algebraic models, two oscillators, anharmonic coupling      525—531
Majorana operators, one-dimensional algebraic models, vibrational spectroscopy, polyatomic molecules      549—552
Majorana operators, three-dimensional algebraic models, Fermi resonances, anharmonic couplings      598—601
Majorana operators, three-dimensional algebraic models, linear triatomic molecules      592—598
Majorana operators, three-dimensional algebraic models, rovibrator coupling, bent triatomic molecules      586—592
Majorana operators, three-dimensional algebraic models, tetratomic molecules      619—625
Majorana operators, three-dimensional algebraic models, triatomic molecules      581—586
Mak, C.H.      43(23 25—29) 46(25) 47(25) 49(27) 50(37) 51(23) 54(23) 55(27 42) 57(27) 59(26) 61(26 37) 62(26) 65(28) 66(28) 70(29) 71(29) 72(78) 75—76 79(13—14) 104(13) 113(13—14) 131 207(98—100) 217 681(118) 702
Makri, N.      40(5) 41(5 12) 42(17) 52(12) 74 79(15—20) 104(16 20) 113(20) 131 207(101) 217 412(79) 417(79) 449
Malmqvist, P.A.      222(5—7 9—11 13) 224(13) 225—226(607) 227(13) 229(9) 236(6—7) 238(23) 240(27) 241(7) 243(7 23) 244(23) 247(5 13 34) 248(13 27) 252(46) 254(10) 256(11) 263(13) 276(13 46) 277(27) 283(13) 284(13 46) 287(23 168) 288(23) 289(168) 296(168) 320(23) 323(7 23) 324(210) 325—326 329 331 340(14) 370(56) 380(56 99) 384 386—387
Malrieu, J.-P.      233(21) 263(83) 325 327 719(101) 752
Mandich, M.L.      354(28) 385
Manini, N.      582(72) 597(76) 617(72 94—95) 625(94) 648
Manolopoulos, D.E.      678(88) 700 716(77) 751
Manousakis, E.      26(72) 37
Many-body wavefunction, quantum Monte Carlo (QMC) and      3
Manz, J.      417(109) 422(109) 450 567(65) 648
Maradudin, A.A.      139(28 35 38—39) 215
Marchi, M.      65(63) 68(66) 76 91(65) 92(65) 104(65) 111(65) 129(65) 133
Marchioro, T.L.      41(8) 74
Marcus electron transfer theory, canonical transformation of system-bath coupling strength      113
Marcus electron transfer theory, condensed-phase system quantum dynamics      79
Marcus electron transfer theory, DNA/metal complex long-range electron transfer      111—112
Marcus ET theory, real-time QMC techniques, centroid quantum transition-state testing      59—64
Marcus — Coltrin tunneling path, potential energy surfaces (PES), intrinsic reaction path (IRP) dynamics      421—422
Marcus, R.A.      59(47) 75 65(57) 76 398(35—36) 409(35—36 74) 412(35) 417(111 121) 419(111) 421(111) 424(121 171—173) 425(121 174—175) 448—452 538(44) 567(55) 574(44) 647
Marian, C.M.      362(41) 385
Marinov, m.s.      136(15) 215
Markov approximation techniques, Redfield equation      83
Marsden, C.J.      300(185) 330
Marsili, M.      734(179) 754
Martens, C.C.      604(83) 648
Martin, C.H.      720—721(115—118) 726(116—117) 753
Martin, J.L.      65(60) 76 665(37) 699
Martin, J.M.L.      729—731(138) 753
Martin, R.L.      290(175) 329 349(21) 361(21) 385
Martin, R.M.      14(99) 18(42 50) 20(59) 23(66) 24(99) 28(94) 32(50 59 99) 33(103) 36—38 667(40) 684—685(123) 699 702
Martinez, A.      371(58) 376(58) 386
Martyna, G.J.      140(48) 173(48) 175(64) 181(48) 183(48) 184(48 72) 190(72) 203(48) 206—207(63) 215—216
Marynick, D.S.      706(18) 750
Maslen, P.E.      390(8) 447 712(60) 751
Mason, B.A.      55(45) 70(45) 75
Mass scaling laws, one-dimensional algebraic models      552—556
Mass-velocity terms, CASPT2/CASSCF techniques, relativistic effects in transition dihalides      304—306
Mass-velocity terms, CASPT2/CASSCF techniques, transition metal compounds      290
Mass-velocity terms, transition metal electronic structure, second-row transition metals      349
Mass-weighted Cartesian coordinates (MWC), potential energy surfaces (PES), intrinsic reaction paths and natural collision coordinates      410—412
Mass-weighted Cartesian coordinates (MWC), potential energy surfaces (PES), IRP potentials in internal (valence) coordinates      414—415
Mass-weighted Cartesian coordinates (MWC), potential energy surfaces (PES), steepest descent reaction paths      397—400
Mataga, N.      711(54) 721(54) 751
Mathies, R.A.      128(120) 134
Matos, J.M.O.      247(34) 325
Matsubara frequency, centroid density, equilibrium properties      142
Matsuzawa, N.      717(82—85) 752
Mattsson, T.R.      207(115—116) 218
Mattuck, R.D.      146(56) 216
Matzinger, S.      285(151) 329
Mauri, F.      684(122) 685(122 130) 688(130—131) 689(130) 702
Maurice, D.      419(150) 451
Maximum entropy techniques, real-time QMC      41
Maximum entropy, Fermion sign problem and      25
Mayer cluster expansion, centroid density, diagrammatic representation      146
Mayer, J.E.      146(55) 216
Maynau, D.      263(83) 327
Mazur, Y.      270(105) 272(105) 328
McAlpine, R.D.      270—271(98) 327
McCammon, J.A.      92(70) 133 734(163) 754
McConnell, H.M.      101(88) 133
McCoy, A.B.      631(102) 649
McDiarmid, R.      258(67—68 70 73 76) 259(73 76) 260(73 80) 326—327
McDoull, J.J.W.      401(48) 406(48 62) 427(62) 448—449
McGurn, A.R.      139(28 38—39) 215
McKee, M.L.      417(107) 450
McKenzie, D.R.      676—677(65) 700
McLafferty, F.J.      417(122) 451
McLaughlin, T.G.      270—272(102) 327
McLean, A.D.      320(206) 330 379(95) 387
Mclver, J.W.      401(44—45) 412(44) 418(127) 419(135 137) 422(44) 448 451
McMillan, W.L.      4(2) 35
McRae, R.P.      417(113) 427(113) 450
MCSCF Fock matrix, multiconfigurational second-order perturbation theory (CASPT2), MCP interacting double bonds      264
MCSCF Fock matrix, multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian      231—232
McWeeny, R.      726(133) 753
Mean absolute deviations, transition metal electronic structure      339—340
Mebel, A.M.      372(64) 386
Mehl, M.J.      694(137) 702
Mejean, T.      322(216) 331
Mele, E.J.      680(106—107) 701
Melissas, V.S.      401 (49) 408(49) 418(124) 419(139 141 422(124 155) 42 3(139 142) 448 451—452
Melius, C.F.      419(148) 451
Menegotti, L.      538(48) 571(48) 647
Menger, F.M.      741(242) 756
Mengoni, A.      531(39) 547(39) 611(89) 647—648
Menou, M.      128(118) 134 652(16) 679(95—96) 695 701
Mercer, J.L.Jr.      654(25—26) 656(25) 658(25) 680(108) 694(25—26) 699 701
Merchan, M.      222(13) 224(13) 227(13) 247(13) 248(13 35—36) 253(48) 254(35) 258—259(76) 257(62) 258(65) 259(65) 262(65) 263(13 48 65 79—81) 268(36 79 93) 269(79 94—95) 270(96—97) 271—272(97) 273(94) 276(13 116 127) 280—281(116) 282(36 116) 283(13 116) 284(13 36 116 141) 287—289(168) 296(168) 325—329
Mercury compounds, relativistic effective core potentials (RECPs)      360—365
Merenga, H.      737(228) 756
Mermin free energy, tight-binding molecular dynamics (TBMD)      665—666
Mermin, N.D.      665(38) 699
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå