Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Merz, K.M.      734(173) 754
Merz, K.M.Jr.      404(60) 427(60 189) 449 453
Mesmaeker, A.K.      101(82) 133
Messiah, A.      462(12) 464(12) 472(12) 646
Messina, M.      173(63) 180(66) 206(63 96) 207(63 66 96) 216—217
Metal hydrides, spin-orbit effects      364—365
Methyl systems, bond strengths      373—374
Methylenecyclopropene (MCP), multiconfigurational second-order perturbation theory (CASPT2), electron spectra problems and limitations      250—255
Methylenecyclopropene (MCP), multiconfigurational second-order perturbation theory (CASPT2), interacting double bonds      263—269
Metropolis walking, real-time path integration, Monte Carlo sampling      59
Metropolis walking, stationary-phase Monte Carlo (SPMC)      42 47—48
Metropolis walking, variational Monte Carlo (VMC)      5
Metropolis, N.      42(18) 74 497(32) 647
Meyer, A.      717(87—88) 752
Meyer, H.-D.      78(2) 98(2) 131
Meyer, W.      429(192) 453
Michalska, D.      263(86—87) 264(83) 327
Michaud, M.      270(106) 272(106) 328
Michel, H.      65(56) 76
Michel-Beyerle, M.E.      65(58) 68(67) 76
Miedma, A.R.      382(104) 387
Miertus, S.      255(54) 326
Miglio, L.      677(68) 700
Migus, A.      65(60) 76
Mihalick, J.E.      404(61) 449
Miki, K.      65(56) 76
Mikkelsen, K.V.      255(55) 326
Milani, P.      652(12) 693(134) 698 702
Miller, J.R.      101(85) 133
Miller, W.H.      42(17) 60(51) 62(54) 74 76 79(10) 131 139(42—44) 140(42—47) 141(42—44) 154—155(45) 159(45) 161(42—44) 180(42—44) 193(46) 197(47) 204(42—44 81 85) 205(42—44) 206(42—46 81) 207(42—46) 210(46) 215 217 396(23) 400(40) 406(40 63) 410(75) 411(75) 412(76—78) 413(82—83) 415(87—88) 416(77 94—96) 417(76 78 82 98) 419(76 96 143) 420(76—77 82 95—96 143) 427(78 82 98) 448—451
Mills, G.      207(118—119) 209(124) 218
Mills, I.M.      414(84) 423(84) 432(84) 449 590(74) 604(84) 631(101) 648—649
Mills, O.S.      741(239) 756
Minimal basis set (MBS) calculations, semiempirical molecular orbital theory      706
Minimum energy paths (MEPs), potential energy surfaces (PES), calculation techniques      400—401
Minimum energy paths (MEPs), potential energy surfaces (PES), multiple interpolation surfaces      435—437
Minimum energy paths (MEPs), potential energy surfaces (PES), steepest descent reaction paths      399—400
Minimum energy paths (MEPs), potential energy surfaces (PES), trajectory calculations, interpolated surfaces      440—442
Minyaev, R.M.      430(199) 453
Mitas, L.      13(32) 14(55) 18(42) 19(52) 20(32 52 55 57—60) 30(58) 31(58) 32(59 102) 33(60) 36—38
Mitchell, S.A.      365—366(48) 385
Miyake, Y.      678(86) 700
MND093 program, semiempirical molecular orbital calculations      712—714
MNDO approximation, semiempirical molecular orbital theory, computational efficiency      745—747
MNDO approximation, semiempirical molecular orbital theory, fullerene chemistry      715—718
MNDO approximation, semiempirical molecular orbital theory, general-purpose applications      730—737
MNDO approximation, semiempirical molecular orbital theory, overview      707—711
MNDO approximation, semiempirical molecular orbital theory, parametrization      743—744
MNDO approximation, semiempirical molecular orbital theory, quantum mechanics/molecular mechanical hybrids      739—742
MNDO approximation, semiempirical molecular orbital theory, special purpose applications      730—737
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, applications      372—379 382
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, benchmark testing      339—345
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, first-row transition metals      365—371
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, geometries      346—348
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, second-row transition metals      350—359
Moiseyev, N.      412(80) 417(80) 449
Mok, M.H.      396(21) 448
Molecular Dynamics (MD)      see also "Tight-binding molecular dynamics (TBMD)"
Molecular dynamics (MD), bacterial photosynthesis, reaction center simulations      65—66
Molecular dynamics (MD), Redfield equation solutions, system-bath coupling      91
Molecular dynamics (MD), tight-binding models of covalent systems, algorithms and force calculations      660—666
Molecular dynamics (MD), tight-binding models of covalent systems, applications      666—682
Molecular dynamics (MD), tight-binding models of covalent systems, Car — Parrinello algorithm      664—665
Molecular dynamics (MD), tight-binding models of covalent systems, current research      682—695
Molecular dynamics (MD), tight-binding models of covalent systems, early versions      651—655
Molecular dynamics (MD), tight-binding models of covalent systems, electronic temperature algorithm      665—666
Molecular dynamics (MD), tight-binding models of covalent systems, matrix diagonalization      662—663
Molecular dynamics (MD), tight-binding models of covalent systems, overview      651—654
Molecular dynamics (MD), tight-binding models of covalent systems, transferability issues      695—697
Molecular dynamics (MD), tight-binding models of covalent systems, transferable carbon model      658—660
Molecular dynamics (MD), tight-binding models of covalent systems, transferable silicon model      655—658
Molecular mechanical potentials, semiempirical molecular orbital theory      737—742
Molecular orbitals (MOs)      see also "Semiempirical molecular orbital theory"
Molecular orbitals (MOs), biothiopene      273—276
Molecular orbitals (MOs), biphenyl      270—273
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), LCPs and PAHs      285—287
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), MCP interacting double bonds      264—269
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), transition metal compound spectroscopy      288—290
Molecular orbitals (MOs), protein chromophores      277—284
Molecular orbitals (MOs), protein chromophores, electron spectra      282—284
Molecular orbitals (MOs), protein chromophores, imidazole molecule      280—282
Molecular orbitals (MOs), protein chromophores, indole molecule      277—280
Molecular spectroscopy, algebraic models, benzene dimer case study      626—631
Molecular spectroscopy, algebraic models, computer routines      638—644
Molecular spectroscopy, algebraic models, dynamical symmetries      462—511 see
Molecular spectroscopy, algebraic models, geometric interpretation      631—638
Molecular spectroscopy, algebraic models, nuclear-molecular physics transition      458—460
Molecular spectroscopy, algebraic models, one-dimensional polyatomic molecules      511—574 see
Molecular spectroscopy, algebraic models, overview      456
Molecular spectroscopy, algebraic models, strengths and limitations of      644—645
Molecular spectroscopy, algebraic models, theoretical models      456—458
Molecular spectroscopy, algebraic models, three-dimensional polyatomic models      575—625
Molecular symmetry group, reaction paths, potential energy surfaces (PES)      429
Moller — Plesset perturbation theory (MP2), multiconfigurational second-order perturbation theory (CASPT2)      224—225
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, benchmark testing      339—345
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, first-row transition metals      365—371
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, geometries      347—348
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, second-row transition metals      358—359
Molteni, C.      677(68) 700
Momentum correlation function, centroid molecular dynamics (CMD)      196—197
Mommers, A.A.      403(55) 449
Moncrieff, D.      300(185) 330
Monte Carlo techniques      see also "Specific Monte Carlo techniques"
Monte Carlo techniques, potential energy surfaces (PES), reaction path calculations      425 427
Monte Carlo techniques, potential energy surfaces (PES), sampling techniques, real-time path integration      57—59
Monte Carlo techniques, tight-binding molecular dynamics (TBMD), genetic algorithm for structural optimization      689—693
Montgomery, J.J.      204(88) 217
Moore, C.C.      379(91) 387
Moore, C.E.      364(47) 385
Moore, M.A.      113(103) 114(103) 134
Moreno, M.      406(64) 419(64) 449
Morita, T.      145(53) 152(53) 216
Morokuma, K.      324(209) 331 336(5) 371(5) 372(5 64) 384 386 396(28) 448
Morosi, G.      25(69) 37
Morris, J.R.      674(54) 699
Morris, R.A.      731—732(145) 753
Morrison, R.J.S.      429(194) 453
Morse potentials, algebraic models, geometric interpretation      632—638
Morse potentials, algebraic models, one-dimensional algebraic models      513
Morse potentials, algebraic models, one-dimensional algebraic models, multiple oscillators      532—552
Morse potentials, algebraic models, three-dimensional algebraic models, tetratomic molecules      617—625
Morse potentials, algebraic models, three-dimensional algebraic models, triatomic molecules, rovibrator coupling      578—586
Morse potentials, algebraic models, U(2) algebraic model      484—494
Morse potentials, algebraic models, U(4) algebraic model      494—511
Morse potentials, algebraic models, vibron models of dynamical symmetry      481—484
Morse, C.B.      377(90) 387
Morse, M.D.      354—355(31) 382(31) 385
Morse, P.M.      481(22) 482(23) 646
Mortier, W.J.      734(180) 754
Moser, C.C.      101(87) 133
Moskovits, M.      322(216) 331
Moskowitz, J.W.      8(21 30) 11(30) 12(30) 16(21 38) 27(81) 35—37
Mueller-Plathe, F.      736(196) 755
Muino, P.L.      255(51) 326
Muirhead, A.R.      278(131) 328
Mukamel, S.      65(59) 76
Mullaly, D.      418(127) 451
Mulliken population analysis, transition metal compound spectroscopy, CASSCF/CASPT2 techniques      300—301
Mulliken, R.S.      734(167) 754
Multiconfigurational second-order perturbation theory (CASPT2), components of      223—244
Multiconfigurational second-order perturbation theory (CASPT2), development of      222
Multiconfigurational second-order perturbation theory (CASPT2), development of, intruder-state problem      237—244
Multiconfigurational second-order perturbation theory (CASPT2), development of, limits of      322—324
Multiconfigurational second-order perturbation theory (CASPT2), development of, multistate CASPT2      232—237
Multiconfigurational second-order perturbation theory (CASPT2), development of, overview      220 222—223
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications      244—322
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, background      244 246—247
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, organic molecules      247—287 see
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, transition metal compounds      287—322 see
Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, applications      380—382
Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, first-row transition metal electronic structure      370—371
Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, future trends      383—384
Multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian      226—232
Multiconfigurational self-consistent field (MCSCF) technique, overview      221
Multiconfigurational self-consistent field (MCSCF) technique, transition metal compound structure      334
Multireference configuration interaction (MRCI) technique, organic molecule spectroscopy      247—248
Multireference configuration interaction (MRCI) technique, organic molecule spectroscopy, imidazole molecule      280—282
Multireference configuration interaction (MRCI) technique, overview      221—222
Multireference configuration interaction (MRCI) technique, transition metal compound electronic structure, first-row transition metals      370—371
Multireference configuration interaction (MRCI) technique, transition metal compound electronic structure, overview      334—335
Multireference configuration interaction (MRCI) technique, transition metal compound spectroscopy      287—288
Murakami, J.      271(101) 327
Muramatsu, A.      69(70) 76
Murphy, C.J.      101(83) 111(83) 133
Murray, C.W.      228(16) 325 712(60) 751
Murrell, J.N.      390(1) 393(1) 426(1) 447 703(5) 713(5) 749
Murry, R.L.      717(89 94 96) 718(94 96) 752
Musaev, D.G.      372(64) 386
Mushinskii, A.      13(33) 36
Nakahara, N.      678(86) 700
Nakamura      1 286(159) 329
Nanda, D.N.      706(25) 710(25) 713(25) 725(25) 744(25) 750
Naphthalene spectroscopy, CASPT2 technique      277—280
Naphthalene spectroscopy, excitation energies      286—287
Naray-Szabo, G.      739(232) 756
Natanson, G.A.      414(85) 423(168—169) 449 452
Natural collision coordinates, intrinsic reaction paths and      408—412
Natural collision coordinates, limits of reaction paths and      431
Natural collision coordinates, reaction paths, potential energy surfaces (PES), interpolation surfaces      434—435
Near-degeneracy effects, transition metal compound electronic structure, first-row transition metals      366—371
Near-degeneracy effects, transition metal compound electronic structure, second-row transition metals      352—359
Near-degeneracy effects, transition metal compound spectroscopy, CASSCF/CASPT2 techniques      290—301
Near-degeneracy effects, transition metal structure, third-row transition metals      359—365
Nebot-Gil, I.      248(36) 253(48) 263(48) 268(36) 282(36) 284(36) 287—289(168) 296(168) 326 329
Needs, R.J.      27(85) 32(100) 37—38
Negele, T.      68(72) 71(72) 76
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, general-purpose applications      722—730
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, overview      705 707—711
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, special-purpose applications      731—737
Negre, M.      736(209) 755
Neighbor lists, reaction path applications, interpolated surfaces convergence      439
Nelin, C.J.      299(182) 330
Nelson, b.      136(14) 215
Nelson, H.H.      419(138) 423(138) 451
Nelson, R.      260(78) 327
Neon atoms, centroid molecular dynamics (CMD), self-diffusion constants      202—203
Nephelauxetic effect, transition metal compound spectroscopy, near-degeneracy effects and active space selection      295
Neuhaus, A.      371(61) 386
Neumaier, K.      48(35) 75
Neumann, M.      139(29) 215
Newton's equations, condensed-phase system quantum dynamics      78—79
Newton, M.      65(63) 76
Newton, M.D.      91(65) 92(65) 104(65 91) 111(65 91) 112(91) 129(65) 133
Nguyen, H.D.      371(59) 386
Nichols, J.      396(26) 448
Nickel compounds, electron spectroscopy, CASPT2 techniques      289
Nickel compounds, electron spectroscopy, near-degeneracy effects and active space selection      296—301
Nickel compounds, electron spectroscopy, spectrum of      316—320
Nickel compounds, transition metal electronic structure, applications      380—382
Nicklass, A.      20(45) 36
Nielsen, H.H.      648
Nielsen, O.H.      667(40) 699
Nieminen, R.M.      567(15) 652(15) 669(15) 698
Nightingale, M.P.      8(20) 12(20) 13(33) 14(20) 15(20) 27(20) 35—36
Nishimoto, K.      711(54) 721(54) 751
Nitrogen, multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem      239—244
Nitsche, S.      284(145—147) 285(145) 329
Noga, J.      222(11) 256(11) 325 710(46) 750
Noga, N.      712(60) 751
Nonlinear mobility, Brownian particle diffusion, real-time QMC techniques      71—72
Nord, R.S.      407(65) 449
Norden, B.      207—272(104) 274—275(104) 279—280(133) 327—328
Norden, T.D.      263(85 88) 264(88—89) 265(88) 267(85) 327
Normal-mode path-integral molecular dynamics (NMPIMD), centroid, molecular dynamics (CMD)      183—186
Norris, J.R.      68(65 68) 76
Norskov, J.K.      680(110 112) 681(112) 695(110 112) 701
Nuclear physics, molecular spectroscopy      458—460
Nuesser, H.J.      627(99) 648
Nunes, R.W.      684—685(120) 702
Nusair, M.      342(20) 384
O'Brien, M.C.M.      113(99) 134
O'Brien, S.C.      714(67) 718(98) 751—752
O'Gorman, E.V.      207(120) 218
O(N) algorithms, tight-binding molecular dynamics (TBMD), electronic structure calculations      683—689
Odom, G.K.      29(97) 38 717—718(94) 752
Oesterhelt, D.      65(62) 76
Off-diagonal matrix elements, three-dimensional algebraic models, rotational spectroscopy      606—610
Ogrodnik, A.      65(58) 76
Ohno, K.      708(41) 721(41) 723(41) 726(42) 734(41) 750
Oka, T.      606(85) 648
Oleksik, J.J.      720(106 111) 752
Olsen, J.      222(11) 254(49) 256(11) 325—326
One-body density matrix, trial wavefunction calculations      13
One-center two-electron integrals, semiempirical molecular orbital theory      723
One-dimensional algebraic models, polyatomic molecules      511—574
One-dimensional algebraic models, polyatomic molecules, anharmonic couplings      566—574
One-dimensional algebraic models, polyatomic molecules, electromagnetic transition intensities      556—566
One-dimensional algebraic models, polyatomic molecules, multiple-oscillator anharmonic coupling      531—556
One-dimensional algebraic models, polyatomic molecules, overview      511—513
One-dimensional algebraic models, polyatomic molecules, two-oscillator anharmonic coupling      513—531
Onuchic, J.N.      70(75) 76 81(44) 112(95) 113(44) 132 134
Ooms, K.      305(195) 330
Open-shell exchange matrix, multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian      230—232
Open-shell wavefunction, multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian      227—229
Operator averages, centroid density, averaging formalism      153—155
Operator averages, centroid density, phase-space centroid density      158—160
Oppenheim, I.      83(53) 88(53 60—61) 98(60) 112(60) 132—133
OPT2—like techniques, multiconfigurational second-order perturbation theory (CASPT2)      229—232
Optimization processes, canonical transformation of system-bath coupling strength, variational optimization      116—117
Optimization processes, tight-binding molecular dynamics (TBMD), genetic algorithm for structural optimization      689—693
Optimization processes, trial wavefunction calculations      13—14
Orbital excitation operators, multiconfigurational second-order perturbation theory (CASPT2) and      225—266
Orbital occupation numbers, transition metal compound spectroscopy, near-degeneracy effects and active space selection      291—301
Orbital optimization, trial wavefunction calculations      14
Orbitals, transition metal structure, first-row transition metals      365—371
Orbitals, transition metal structure, second-row transition metals      348—359
Orbitals, transition metal structure, size as factor      348
Orbitals, transition metal structure, third-row transition metals      359—365
Ordejon, P.      679(96) 684—685(123) 701—702
Orellana, G.      101(82) 133
Organic molecules, CASPT2 techniques, advantages of      247—248
Organic molecules, CASPT2 techniques, basis sets      248—251
Organic molecules, CASPT2 techniques, carbonyl compounds formaldehyde and acetone      258—263
Organic molecules, CASPT2 techniques, interacting double bonds methylene-cyclopropene      263—269
Organic molecules, CASPT2 techniques, interacting fragments biphenyl and bithiophene      269—276
Organic molecules, CASPT2 techniques, problems and limitations      251—255
Organic molecules, CASPT2 techniques, protein chromophore spectroscopy      276—284
Organic molecules, CASPT2 techniques, radical cations of LCP and PAH ions      284—287
Organic molecules, CASPT2 techniques, solvation effects      255—258
Organic molecules, semiempirical molecular orbital calculations, accuracy and efficiency      713—714
Orozco, M.      732(150—153) 734(174) 736(209) 754—755
Orsky, A.      83(53) 88(53) 132
Orthogonal transformations, algebraic models, molecular spectroscopy, dynamical symmetries      463—468
Orthogonal transformations, algebraic models, molecular spectroscopy, Lie algebra      469—470
Orthogonal transformations, semiempirical molecular orbital theory      726—730
Orti, E.      248(35) 254(35) 269(94—95) 270(96—97) 271—272(97) 273(109) 277(127) 326—328
Osamura, Y.      390(6) 447
Oshiyama, A.      680(99) 701
Oss, S.      538(46—49) 550(47) 552(50) 554(50) 567(57) 571(47—48) 574(67—68) 582(72) 591(75) 592(75) 597(76) 598(50) 608(86) 614(75 91) 617(68 72 2—94) 624(68 93) 625(94) 627(100) 647—648
Otha, N.      286(167) 329
Owen, R.K.      13(34) 36
Oxtoby, D.W.      91(66) 133
Oxygen molecule, geometry, transition metal electronic structure      347—348
Ozin, G.A.      316(205) 330
Page, M.      391(12) 401(12 44—45) 412(12 44) 417(107—108) 418(127) 419(12 135 137—138 140 148) 422(12 44) 447—448 450—451
Page, R.H.      538(42) 647
Paidarova, I.      430(197) 453
Pair correlation function, tight-binding molecular dynamics energy models, liquid carbon and silicon simulation      672—674
Pair-product trial function, techniques of      11—15
Pairwise potential, centroid molecular dynamics (CMD), centroid force computation      187—190
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå