|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Merz, K.M. 734(173) 754
Merz, K.M.Jr. 404(60) 427(60 189) 449 453
Mesmaeker, A.K. 101(82) 133
Messiah, A. 462(12) 464(12) 472(12) 646
Messina, M. 173(63) 180(66) 206(63 96) 207(63 66 96) 216—217
Metal hydrides, spin-orbit effects 364—365
Methyl systems, bond strengths 373—374
Methylenecyclopropene (MCP), multiconfigurational second-order perturbation theory (CASPT2), electron spectra problems and limitations 250—255
Methylenecyclopropene (MCP), multiconfigurational second-order perturbation theory (CASPT2), interacting double bonds 263—269
Metropolis walking, real-time path integration, Monte Carlo sampling 59
Metropolis walking, stationary-phase Monte Carlo (SPMC) 42 47—48
Metropolis walking, variational Monte Carlo (VMC) 5
Metropolis, N. 42(18) 74 497(32) 647
Meyer, A. 717(87—88) 752
Meyer, H.-D. 78(2) 98(2) 131
Meyer, W. 429(192) 453
Michalska, D. 263(86—87) 264(83) 327
Michaud, M. 270(106) 272(106) 328
Michel, H. 65(56) 76
Michel-Beyerle, M.E. 65(58) 68(67) 76
Miedma, A.R. 382(104) 387
Miertus, S. 255(54) 326
Miglio, L. 677(68) 700
Migus, A. 65(60) 76
Mihalick, J.E. 404(61) 449
Miki, K. 65(56) 76
Mikkelsen, K.V. 255(55) 326
Milani, P. 652(12) 693(134) 698 702
Miller, J.R. 101(85) 133
Miller, W.H. 42(17) 60(51) 62(54) 74 76 79(10) 131 139(42—44) 140(42—47) 141(42—44) 154—155(45) 159(45) 161(42—44) 180(42—44) 193(46) 197(47) 204(42—44 81 85) 205(42—44) 206(42—46 81) 207(42—46) 210(46) 215 217 396(23) 400(40) 406(40 63) 410(75) 411(75) 412(76—78) 413(82—83) 415(87—88) 416(77 94—96) 417(76 78 82 98) 419(76 96 143) 420(76—77 82 95—96 143) 427(78 82 98) 448—451
Mills, G. 207(118—119) 209(124) 218
Mills, I.M. 414(84) 423(84) 432(84) 449 590(74) 604(84) 631(101) 648—649
Mills, O.S. 741(239) 756
Minimal basis set (MBS) calculations, semiempirical molecular orbital theory 706
Minimum energy paths (MEPs), potential energy surfaces (PES), calculation techniques 400—401
Minimum energy paths (MEPs), potential energy surfaces (PES), multiple interpolation surfaces 435—437
Minimum energy paths (MEPs), potential energy surfaces (PES), steepest descent reaction paths 399—400
Minimum energy paths (MEPs), potential energy surfaces (PES), trajectory calculations, interpolated surfaces 440—442
Minyaev, R.M. 430(199) 453
Mitas, L. 13(32) 14(55) 18(42) 19(52) 20(32 52 55 57—60) 30(58) 31(58) 32(59 102) 33(60) 36—38
Mitchell, S.A. 365—366(48) 385
Miyake, Y. 678(86) 700
MND093 program, semiempirical molecular orbital calculations 712—714
MNDO approximation, semiempirical molecular orbital theory, computational efficiency 745—747
MNDO approximation, semiempirical molecular orbital theory, fullerene chemistry 715—718
MNDO approximation, semiempirical molecular orbital theory, general-purpose applications 730—737
MNDO approximation, semiempirical molecular orbital theory, overview 707—711
MNDO approximation, semiempirical molecular orbital theory, parametrization 743—744
MNDO approximation, semiempirical molecular orbital theory, quantum mechanics/molecular mechanical hybrids 739—742
MNDO approximation, semiempirical molecular orbital theory, special purpose applications 730—737
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, applications 372—379 382
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, benchmark testing 339—345
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, first-row transition metals 365—371
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, geometries 346—348
Modified coupled pair functional (MCPF) technique, transition metal electronic structure, second-row transition metals 350—359
Moiseyev, N. 412(80) 417(80) 449
Mok, M.H. 396(21) 448
Molecular Dynamics (MD) see also "Tight-binding molecular dynamics (TBMD)"
Molecular dynamics (MD), bacterial photosynthesis, reaction center simulations 65—66
Molecular dynamics (MD), Redfield equation solutions, system-bath coupling 91
Molecular dynamics (MD), tight-binding models of covalent systems, algorithms and force calculations 660—666
Molecular dynamics (MD), tight-binding models of covalent systems, applications 666—682
Molecular dynamics (MD), tight-binding models of covalent systems, Car — Parrinello algorithm 664—665
Molecular dynamics (MD), tight-binding models of covalent systems, current research 682—695
Molecular dynamics (MD), tight-binding models of covalent systems, early versions 651—655
Molecular dynamics (MD), tight-binding models of covalent systems, electronic temperature algorithm 665—666
Molecular dynamics (MD), tight-binding models of covalent systems, matrix diagonalization 662—663
Molecular dynamics (MD), tight-binding models of covalent systems, overview 651—654
Molecular dynamics (MD), tight-binding models of covalent systems, transferability issues 695—697
Molecular dynamics (MD), tight-binding models of covalent systems, transferable carbon model 658—660
Molecular dynamics (MD), tight-binding models of covalent systems, transferable silicon model 655—658
Molecular mechanical potentials, semiempirical molecular orbital theory 737—742
Molecular orbitals (MOs) see also "Semiempirical molecular orbital theory"
Molecular orbitals (MOs), biothiopene 273—276
Molecular orbitals (MOs), biphenyl 270—273
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), LCPs and PAHs 285—287
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), MCP interacting double bonds 264—269
Molecular orbitals (MOs), multiconfigurational second-order perturbation theory (CASPT2), transition metal compound spectroscopy 288—290
Molecular orbitals (MOs), protein chromophores 277—284
Molecular orbitals (MOs), protein chromophores, electron spectra 282—284
Molecular orbitals (MOs), protein chromophores, imidazole molecule 280—282
Molecular orbitals (MOs), protein chromophores, indole molecule 277—280
Molecular spectroscopy, algebraic models, benzene dimer case study 626—631
Molecular spectroscopy, algebraic models, computer routines 638—644
Molecular spectroscopy, algebraic models, dynamical symmetries 462—511 see
Molecular spectroscopy, algebraic models, geometric interpretation 631—638
Molecular spectroscopy, algebraic models, nuclear-molecular physics transition 458—460
Molecular spectroscopy, algebraic models, one-dimensional polyatomic molecules 511—574 see
Molecular spectroscopy, algebraic models, overview 456
Molecular spectroscopy, algebraic models, strengths and limitations of 644—645
Molecular spectroscopy, algebraic models, theoretical models 456—458
Molecular spectroscopy, algebraic models, three-dimensional polyatomic models 575—625
Molecular symmetry group, reaction paths, potential energy surfaces (PES) 429
Moller — Plesset perturbation theory (MP2), multiconfigurational second-order perturbation theory (CASPT2) 224—225
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, benchmark testing 339—345
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, first-row transition metals 365—371
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, geometries 347—348
Moller — Plesset perturbation theory (MP2), transition metal electronic structure, second-row transition metals 358—359
Molteni, C. 677(68) 700
Momentum correlation function, centroid molecular dynamics (CMD) 196—197
Mommers, A.A. 403(55) 449
Moncrieff, D. 300(185) 330
Monte Carlo techniques see also "Specific Monte Carlo techniques"
Monte Carlo techniques, potential energy surfaces (PES), reaction path calculations 425 427
Monte Carlo techniques, potential energy surfaces (PES), sampling techniques, real-time path integration 57—59
Monte Carlo techniques, tight-binding molecular dynamics (TBMD), genetic algorithm for structural optimization 689—693
Montgomery, J.J. 204(88) 217
Moore, C.C. 379(91) 387
Moore, C.E. 364(47) 385
Moore, M.A. 113(103) 114(103) 134
Moreno, M. 406(64) 419(64) 449
Morita, T. 145(53) 152(53) 216
Morokuma, K. 324(209) 331 336(5) 371(5) 372(5 64) 384 386 396(28) 448
Morosi, G. 25(69) 37
Morris, J.R. 674(54) 699
Morris, R.A. 731—732(145) 753
Morrison, R.J.S. 429(194) 453
Morse potentials, algebraic models, geometric interpretation 632—638
Morse potentials, algebraic models, one-dimensional algebraic models 513
Morse potentials, algebraic models, one-dimensional algebraic models, multiple oscillators 532—552
Morse potentials, algebraic models, three-dimensional algebraic models, tetratomic molecules 617—625
Morse potentials, algebraic models, three-dimensional algebraic models, triatomic molecules, rovibrator coupling 578—586
Morse potentials, algebraic models, U(2) algebraic model 484—494
Morse potentials, algebraic models, U(4) algebraic model 494—511
Morse potentials, algebraic models, vibron models of dynamical symmetry 481—484
Morse, C.B. 377(90) 387
Morse, M.D. 354—355(31) 382(31) 385
Morse, P.M. 481(22) 482(23) 646
Mortier, W.J. 734(180) 754
Moser, C.C. 101(87) 133
Moskovits, M. 322(216) 331
Moskowitz, J.W. 8(21 30) 11(30) 12(30) 16(21 38) 27(81) 35—37
Mueller-Plathe, F. 736(196) 755
Muino, P.L. 255(51) 326
Muirhead, A.R. 278(131) 328
Mukamel, S. 65(59) 76
Mullaly, D. 418(127) 451
Mulliken population analysis, transition metal compound spectroscopy, CASSCF/CASPT2 techniques 300—301
Mulliken, R.S. 734(167) 754
Multiconfigurational second-order perturbation theory (CASPT2), components of 223—244
Multiconfigurational second-order perturbation theory (CASPT2), development of 222
Multiconfigurational second-order perturbation theory (CASPT2), development of, intruder-state problem 237—244
Multiconfigurational second-order perturbation theory (CASPT2), development of, limits of 322—324
Multiconfigurational second-order perturbation theory (CASPT2), development of, multistate CASPT2 232—237
Multiconfigurational second-order perturbation theory (CASPT2), development of, overview 220 222—223
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications 244—322
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, background 244 246—247
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, organic molecules 247—287 see
Multiconfigurational second-order perturbation theory (CASPT2), development of, spectroscopic applications, transition metal compounds 287—322 see
Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, applications 380—382
| Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, first-row transition metal electronic structure 370—371
Multiconfigurational second-order perturbation theory (CASPT2), transition metal electronic structure, future trends 383—384
Multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian 226—232
Multiconfigurational self-consistent field (MCSCF) technique, overview 221
Multiconfigurational self-consistent field (MCSCF) technique, transition metal compound structure 334
Multireference configuration interaction (MRCI) technique, organic molecule spectroscopy 247—248
Multireference configuration interaction (MRCI) technique, organic molecule spectroscopy, imidazole molecule 280—282
Multireference configuration interaction (MRCI) technique, overview 221—222
Multireference configuration interaction (MRCI) technique, transition metal compound electronic structure, first-row transition metals 370—371
Multireference configuration interaction (MRCI) technique, transition metal compound electronic structure, overview 334—335
Multireference configuration interaction (MRCI) technique, transition metal compound spectroscopy 287—288
Murakami, J. 271(101) 327
Muramatsu, A. 69(70) 76
Murphy, C.J. 101(83) 111(83) 133
Murray, C.W. 228(16) 325 712(60) 751
Murrell, J.N. 390(1) 393(1) 426(1) 447 703(5) 713(5) 749
Murry, R.L. 717(89 94 96) 718(94 96) 752
Musaev, D.G. 372(64) 386
Mushinskii, A. 13(33) 36
Nakahara, N. 678(86) 700
Nakamura 1 286(159) 329
Nanda, D.N. 706(25) 710(25) 713(25) 725(25) 744(25) 750
Naphthalene spectroscopy, CASPT2 technique 277—280
Naphthalene spectroscopy, excitation energies 286—287
Naray-Szabo, G. 739(232) 756
Natanson, G.A. 414(85) 423(168—169) 449 452
Natural collision coordinates, intrinsic reaction paths and 408—412
Natural collision coordinates, limits of reaction paths and 431
Natural collision coordinates, reaction paths, potential energy surfaces (PES), interpolation surfaces 434—435
Near-degeneracy effects, transition metal compound electronic structure, first-row transition metals 366—371
Near-degeneracy effects, transition metal compound electronic structure, second-row transition metals 352—359
Near-degeneracy effects, transition metal compound spectroscopy, CASSCF/CASPT2 techniques 290—301
Near-degeneracy effects, transition metal structure, third-row transition metals 359—365
Nebot-Gil, I. 248(36) 253(48) 263(48) 268(36) 282(36) 284(36) 287—289(168) 296(168) 326 329
Needs, R.J. 27(85) 32(100) 37—38
Negele, T. 68(72) 71(72) 76
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, general-purpose applications 722—730
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, overview 705 707—711
Neglect of diatomic differential overlap (NDDO) approximation, semiempirical molecular orbital theory, special-purpose applications 731—737
Negre, M. 736(209) 755
Neighbor lists, reaction path applications, interpolated surfaces convergence 439
Nelin, C.J. 299(182) 330
Nelson, b. 136(14) 215
Nelson, H.H. 419(138) 423(138) 451
Nelson, R. 260(78) 327
Neon atoms, centroid molecular dynamics (CMD), self-diffusion constants 202—203
Nephelauxetic effect, transition metal compound spectroscopy, near-degeneracy effects and active space selection 295
Neuhaus, A. 371(61) 386
Neumaier, K. 48(35) 75
Neumann, M. 139(29) 215
Newton's equations, condensed-phase system quantum dynamics 78—79
Newton, M. 65(63) 76
Newton, M.D. 91(65) 92(65) 104(65 91) 111(65 91) 112(91) 129(65) 133
Nguyen, H.D. 371(59) 386
Nichols, J. 396(26) 448
Nickel compounds, electron spectroscopy, CASPT2 techniques 289
Nickel compounds, electron spectroscopy, near-degeneracy effects and active space selection 296—301
Nickel compounds, electron spectroscopy, spectrum of 316—320
Nickel compounds, transition metal electronic structure, applications 380—382
Nicklass, A. 20(45) 36
Nielsen, H.H. 648
Nielsen, O.H. 667(40) 699
Nieminen, R.M. 567(15) 652(15) 669(15) 698
Nightingale, M.P. 8(20) 12(20) 13(33) 14(20) 15(20) 27(20) 35—36
Nishimoto, K. 711(54) 721(54) 751
Nitrogen, multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem 239—244
Nitsche, S. 284(145—147) 285(145) 329
Noga, J. 222(11) 256(11) 325 710(46) 750
Noga, N. 712(60) 751
Nonlinear mobility, Brownian particle diffusion, real-time QMC techniques 71—72
Nord, R.S. 407(65) 449
Norden, B. 207—272(104) 274—275(104) 279—280(133) 327—328
Norden, T.D. 263(85 88) 264(88—89) 265(88) 267(85) 327
Normal-mode path-integral molecular dynamics (NMPIMD), centroid, molecular dynamics (CMD) 183—186
Norris, J.R. 68(65 68) 76
Norskov, J.K. 680(110 112) 681(112) 695(110 112) 701
Nuclear physics, molecular spectroscopy 458—460
Nuesser, H.J. 627(99) 648
Nunes, R.W. 684—685(120) 702
Nusair, M. 342(20) 384
O'Brien, M.C.M. 113(99) 134
O'Brien, S.C. 714(67) 718(98) 751—752
O'Gorman, E.V. 207(120) 218
O(N) algorithms, tight-binding molecular dynamics (TBMD), electronic structure calculations 683—689
Odom, G.K. 29(97) 38 717—718(94) 752
Oesterhelt, D. 65(62) 76
Off-diagonal matrix elements, three-dimensional algebraic models, rotational spectroscopy 606—610
Ogrodnik, A. 65(58) 76
Ohno, K. 708(41) 721(41) 723(41) 726(42) 734(41) 750
Oka, T. 606(85) 648
Oleksik, J.J. 720(106 111) 752
Olsen, J. 222(11) 254(49) 256(11) 325—326
One-body density matrix, trial wavefunction calculations 13
One-center two-electron integrals, semiempirical molecular orbital theory 723
One-dimensional algebraic models, polyatomic molecules 511—574
One-dimensional algebraic models, polyatomic molecules, anharmonic couplings 566—574
One-dimensional algebraic models, polyatomic molecules, electromagnetic transition intensities 556—566
One-dimensional algebraic models, polyatomic molecules, multiple-oscillator anharmonic coupling 531—556
One-dimensional algebraic models, polyatomic molecules, overview 511—513
One-dimensional algebraic models, polyatomic molecules, two-oscillator anharmonic coupling 513—531
Onuchic, J.N. 70(75) 76 81(44) 112(95) 113(44) 132 134
Ooms, K. 305(195) 330
Open-shell exchange matrix, multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian 230—232
Open-shell wavefunction, multiconfigurational second-order perturbation theory (CASPT2), zeroth-order Hamiltonian 227—229
Operator averages, centroid density, averaging formalism 153—155
Operator averages, centroid density, phase-space centroid density 158—160
Oppenheim, I. 83(53) 88(53 60—61) 98(60) 112(60) 132—133
OPT2—like techniques, multiconfigurational second-order perturbation theory (CASPT2) 229—232
Optimization processes, canonical transformation of system-bath coupling strength, variational optimization 116—117
Optimization processes, tight-binding molecular dynamics (TBMD), genetic algorithm for structural optimization 689—693
Optimization processes, trial wavefunction calculations 13—14
Orbital excitation operators, multiconfigurational second-order perturbation theory (CASPT2) and 225—266
Orbital occupation numbers, transition metal compound spectroscopy, near-degeneracy effects and active space selection 291—301
Orbital optimization, trial wavefunction calculations 14
Orbitals, transition metal structure, first-row transition metals 365—371
Orbitals, transition metal structure, second-row transition metals 348—359
Orbitals, transition metal structure, size as factor 348
Orbitals, transition metal structure, third-row transition metals 359—365
Ordejon, P. 679(96) 684—685(123) 701—702
Orellana, G. 101(82) 133
Organic molecules, CASPT2 techniques, advantages of 247—248
Organic molecules, CASPT2 techniques, basis sets 248—251
Organic molecules, CASPT2 techniques, carbonyl compounds formaldehyde and acetone 258—263
Organic molecules, CASPT2 techniques, interacting double bonds methylene-cyclopropene 263—269
Organic molecules, CASPT2 techniques, interacting fragments biphenyl and bithiophene 269—276
Organic molecules, CASPT2 techniques, problems and limitations 251—255
Organic molecules, CASPT2 techniques, protein chromophore spectroscopy 276—284
Organic molecules, CASPT2 techniques, radical cations of LCP and PAH ions 284—287
Organic molecules, CASPT2 techniques, solvation effects 255—258
Organic molecules, semiempirical molecular orbital calculations, accuracy and efficiency 713—714
Orozco, M. 732(150—153) 734(174) 736(209) 754—755
Orsky, A. 83(53) 88(53) 132
Orthogonal transformations, algebraic models, molecular spectroscopy, dynamical symmetries 463—468
Orthogonal transformations, algebraic models, molecular spectroscopy, Lie algebra 469—470
Orthogonal transformations, semiempirical molecular orbital theory 726—730
Orti, E. 248(35) 254(35) 269(94—95) 270(96—97) 271—272(97) 273(109) 277(127) 326—328
Osamura, Y. 390(6) 447
Oshiyama, A. 680(99) 701
Oss, S. 538(46—49) 550(47) 552(50) 554(50) 567(57) 571(47—48) 574(67—68) 582(72) 591(75) 592(75) 597(76) 598(50) 608(86) 614(75 91) 617(68 72 2—94) 624(68 93) 625(94) 627(100) 647—648
Otha, N. 286(167) 329
Owen, R.K. 13(34) 36
Oxtoby, D.W. 91(66) 133
Oxygen molecule, geometry, transition metal electronic structure 347—348
Ozin, G.A. 316(205) 330
Page, M. 391(12) 401(12 44—45) 412(12 44) 417(107—108) 418(127) 419(12 135 137—138 140 148) 422(12 44) 447—448 450—451
Page, R.H. 538(42) 647
Paidarova, I. 430(197) 453
Pair correlation function, tight-binding molecular dynamics energy models, liquid carbon and silicon simulation 672—674
Pair-product trial function, techniques of 11—15
Pairwise potential, centroid molecular dynamics (CMD), centroid force computation 187—190
|
|
|
Ðåêëàìà |
|
|
|