Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Pairwise potential, centroid molecular dynamics (CMD), pseudopotentials      190—191
Pairwise potential, tight-binding molecular dynamics energy models, carbon models      658—660
Pairwise potential, tight-binding molecular dynamics energy models, silicon models      656—658
Palke, W.E.      734(177) 754
Palladium compounds, electronic structure, relativistic effects      349—350
Palladium compounds, electronic structure, transition state      352—359
Palma, A.      484(29) 646
Panoff, R.M.      14(56) 36
Pantelides, S.T.      680(99) 701
Panzarini, G.      681(115) 701
Papaconstantopoulos, D.A.      694(137) 702
Papai, I.      371(58) 376(58) 386
Papousek, D.      601(78) 648
Parameter, 80 (PCI-80) values, transition metal electronic structure, applications      372—379 381—382
Parameter, 80 (PCI-80) values, transition metal electronic structure, first-row transition metal electronic structure      368—371
Parameter, 80 (PCI-80) values, transition metal electronic structure, future trends      383—384
Parameter, 80 (PCI-80) values, transition metal electronic structure, overview      340—341
Parameter, 80 (PCI-80) values, transition metal electronic structure, second-row transition metals      353—359
Parametrization strategies, semiempirical molecular orbital theory, applications      742—744
Parametrization strategies, semiempirical molecular orbital theory, overview      706—711
Pariser — Parr — Pople theories, semiempirical molecular orbital theory      720—722
Pariser, R.      276(118) 328
Park, T.J.      95(73) 97(73) 133
Parker, W.      741(240) 756
Parr, R.G.      342(19) 384 703(1) 720(1) 734(177) 749 754
Parrinello, M.      33(104) 38 182(71) 184(73) 188—189(73) 216 652(2) 670(47) 671(47 55—58) 672(47) 673(47 55) 674(55—56) 684(119) 698—699 702
Parris, P.E.      116(114) 134
Parson, W.W.      65(64) 76 92(67—68) 128(67—68) 133
Parsons, D.F.      431—433(200) 445(200) 453
Partridge, H.      221(3) 290(174) 324 329 336(6) 355(33) 356(33) 363(53) 367(33) 369(33 53) 371(6) 379(98) 384—387
Paschkewitz, J.      731—732(145) 753
Patchkovskii, S.      723(121) 745(253) 746(121) 753 757
Path centroid variable, summary of      138
Path-integral molecular dynamics (PIMD), centroid molecular dynamics (CMD), direct approach      182—186
Path-integral molecular dynamics (PIMD), centroid molecular dynamics (CMD), position-time correlation functions      193—196
Path-integral molecular dynamics (PIMD), partition functions      138
Path-integral molecular dynamics (PIMD), proton transfer in polar solvents      208—210
Path-integral Monte Carlo (PIMC) technique, centroid density compared with      161—162
Path-integral Monte Carlo (PIMC) technique, centroid molecular dynamics (CMD), direct approach      182—186
Path-integral Monte Carlo (PIMC) technique, centroid molecular dynamics (CMD), partition functions      138
Path-integral Monte Carlo (PIMC) technique, limits of      34
Path-integral Monte Carlo (PIMC) technique, proton transfer in polar solvents      208—210
Path-integral Monte Carlo (PIMC) technique, summary of      2 4 9—11
Path-integral quantum transition-state theory (PI-QTST), formalism      205—207
Path-integral quantum transition-state theory (PI-QTST), future trends      212—213
Path-integral quantum transition-state theory (PI-QTST), overview      204
Path-integral quantum transition-state theory (PI-QTST), proton transfer in polar solvents      207—210
Path-integral techniques, centroid methods      see also "Centroid theory"
Path-integral techniques, centroid methods, activated dynamics and quantum transitionstate theory      204—212
Path-integral techniques, centroid methods, dynamical properties      162—204
Path-integral techniques, centroid methods, equilibrium properties      141—162
Path-integral techniques, centroid methods, overview      136—141
Path-integral techniques, condensed-phase system quantum dynamics      79
Path-integral techniques, real-time QMC techniques, bacterial photosynthesis, primary charge separation      65—68
Path-integral techniques, real-time QMC techniques, blocking strategies      43—48
Path-integral techniques, real-time QMC techniques, Brownian particle diffusion in periodic potential      68—72
Path-integral techniques, real-time QMC techniques, discretization techniques      51—54
Path-integral techniques, real-time QMC techniques, electron transfer (ET) reactions, centroid quantum transition-state theory      59—64
Path-integral techniques, real-time QMC techniques, future applications      72—73
Path-integral techniques, real-time QMC techniques, overview      39—43
Path-integral techniques, real-time QMC techniques, quasi-classical degrees of freedom, elimination      54—57
Path-integral techniques, real-time QMC techniques, sampling techniques      57—59
Path-integral techniques, real-time QMC techniques, spin-boson dynamics      48—59
Path-integral techniques, real-time QMC techniques, spin-boson models      49—51
Path-integral techniques, Redfield equation and      128—129
Pauli equation, transition metal compounds, CASSCF/CASPT2 studies      290
Pauslon, J.F.      731—732(145) 753
Pavelites, J.J.      736—737(189) 755
Pavese, M.      140(47) 197(47) 215
Paxton, A.T.      680(102) 701
Pechukas, P.      78(7—8) 88(62) 131 133 204(82) 206(82) 217 417(122) 451
Pecora, R.      176(65) 216
Pederson, M.      665(36) 699
Pedraza, D.F.      680(101) 701
Peng, Z.      404(60) 427(60 189) 449 453
Perdew, J.P.      355(35—36) 385
Peric, M.      221(4) 324
Periodic potential, Brownian particle diffusion, real-time QMC techniques      68—72
Permutation techniques, path-integral Monte Carlo (PIMC)      9—10
Persson, B.J.      244(28—29) 248(40) 287(28—29 169) 289(169 173) 291(28—29) 298(28—29) 301(29) 308(29) 320(29) 324(208) 325—326 329 331 380—381(101) 387
Perturbation theory      see also "Multi-configurational second-order perturbation theory (CASPT2)" "Second-order
Perturbation theory, centroid density, diagrammatic representation      145—146
Perturbation theory, statistical mechanics, condensed-phase system quantum dynamics      80
Petrongolo, C.      268(91) 327
Petsko, G.A.      738(229) 756
Pettersson, L.G.M.      287(172) 329 355—356(34) 375(89) 385 387
Pettifor, D.G.      654—655(21) 658(21) 679(21) 698
Peyerimhoff, S.D.      221(4) 258(75) 269(91) 324 327 362(41) 385 401(51) 433(202) 449 453
Phase-space centroid density, defined      157—160
Phillips, J.C.      29(96) 38 652(8) 698
Phillis, J.G.      258(69 72—73) 259—260(73) 326—327
Photoelectron spectrosopy (PES), linear conjugated polyenes (LCP)      284—285
Piccito, G.      747(256) 757
Pickett, W.E.      17(40) 36 680(109) 701
Pierce, L.      260(78) 327
Pierce-Beaver, K.      371(59) 386
Pierleoni, C.      10(25) 36
Pierloot      380(101) 381(101—102) 387
Pierloot, K.      244(28—29) 248(41) 277(41) 287(28—29 170—171) 289—290(171) 291(28—29 170 177—178) 298(28—29) 299(178) 300(184 186—187) 301(29 170 177 188—191) 302(41) 305(195) 308(29 41 170 177) 310(202) 311(170) 316(177) 320(29) 325 329—330
Pine, A.S.      571(66) 648
Pintschovius, L.      677(94) 701
Platt, J.R.      276—277(199) 328
Pliva, J.      571(66) 648
Plutonium compounds, spin-orbit effects      364—365
Poeschl — Teller potential, algebraic models, geometric interpretation of algebraic models      632—638
Poeschl — Teller potential, algebraic models, one-dimensional algebraic models, multiple oscillators      532
Poeschl — Teller potential, algebraic models, U(2) algebraic model      484—494
Poeschl — Teller potential, algebraic models, U(4) algebraic model      504—511
Poeschl — Teller potential, algebraic models, vibron models of dynamical symmetry      483—484
Poeschl, G.      483(24) 646
Poetter, T.      710(51—52) 729(51—52) 751
Polak, R.      430(197) 453
Polanyi, J.C.      396(20—22) 416(20 22) 448
Polar solvents, proton transfer reactions, path-integral quantum transition-state theory (PI-QTST)      207—210
Politzer, P.      734(178) 754
Pollak, E.      113(100) 134 206(97) 217
Pollard, W.T.      80(39—40) 85(39—40) 86(39) 94(40) 95(39) 97(39—40) 98(39—40) 101(39) 104(40) 110(40) 111(40) 112(96) 128(120) 132 134
Pollock, E.L.      181(69) 184—185(69) 216
Polyatomic molecules, one-dimensional algebraic models      511—574
Polyatomic molecules, one-dimensional algebraic models, anharmonic couplings      566—574
Polyatomic molecules, one-dimensional algebraic models, electromagnetic transition intensities      556—566
Polyatomic molecules, one-dimensional algebraic models, multiple-oscillator anharmonic coupling      531—556
Polyatomic molecules, one-dimensional algebraic models, overview      511—513
Polyatomic molecules, one-dimensional algebraic models, two-oscillator anharmonic coupling      513—531
Polyatomic molecules, potential energy surfaces (PES), reaction paths and      444—446
Polyatomic molecules, three-dimensional algebraic models      575—625
Polyatomic molecules, three-dimensional algebraic models, electromagnetic transition intensities      610—615
Polyatomic molecules, three-dimensional algebraic models, Fermi resonances, anharmonic coupling      598—601
Polyatomic molecules, three-dimensional algebraic models, overview      575—576
Polyatomic molecules, three-dimensional algebraic models, rotational spectroscopy      601—610
Polyatomic molecules, three-dimensional algebraic models, tetratomic molecules      615—625
Polyatomic molecules, three-dimensional algebraic models, triatomic molecules, rovibrator coupling      576—598
Polyatomic molecules, vibrational spectroscopy      547—552
Polycyclic aromatic hydrocarbons (PAH), electronic spectroscopy, CASPT2 techniques      284—287
Polyparaphenylene (PPP), CASPT2 technique, interacting fragments      270
Polythiopene (PT), CASPT2, interacting fragments      270
Pople, J.A.      29(97) 38 246(30) 325 339(12) 341(12 16—17) 350(25) 384—385 703(4) 705(4 16) 706(29 31) 712(61) 713(4) 714(61) 722(61) 727(29) 744(247) 749—751 757
Popov, M.S.      68(65) 76
Population relaxation rate, Redfield equation solutions, DNA/metal complex long-range electron transfer      103—104
Population relaxation rate, Redfield equation solutions, two-level systems in stochastic baths      99—100
Porphin molecule, restricted active space SCF (RASSCF)      254—255
Porter, R.N.      425—426(180) 452
Position time correlation functions, centroid molecular dynamics (CMD), examples and applications      192—196
Position time correlation functions, centroid molecular dynamics (CMD), summary      175—176
Potential energy surfaces (PES), algebraic models      626
Potential energy surfaces (PES), background      390—391
Potential energy surfaces (PES), molecular spectroscopy      457—458
Potential energy surfaces (PES), reaction paths, bifurcations      407—408
Potential energy surfaces (PES), reaction paths, distinguished coordinates      403—407
Potential energy surfaces (PES), reaction paths, dynamics      415—427
Potential energy surfaces (PES), reaction paths, examples of      401—403
Potential energy surfaces (PES), reaction paths, future trends      446—447
Potential energy surfaces (PES), reaction paths, global surfaces      433—446
Potential energy surfaces (PES), reaction paths, higher-order interpolated surfaces      442—444
Potential energy surfaces (PES), reaction paths, interpolation surfaces      433—442
Potential energy surfaces (PES), reaction paths, invariant theory surfaces      433
Potential energy surfaces (PES), reaction paths, limitations      427—433
Potential energy surfaces (PES), reaction paths, minimum energy paths      400—401
Potential energy surfaces (PES), reaction paths, near-quadratic surfaces      416—423
Potential energy surfaces (PES), reaction paths, polyatomic surfaces      444—446
Potential energy surfaces (PES), reaction paths, principles of      391—396
Potential energy surfaces (PES), reaction paths, solution reactions      427
Potential energy surfaces (PES), reaction paths, steepest descent paths      397—400
Potential energy surfaces (PES), reaction paths, symmetry considerations      428—430
Potential energy surfaces (PES), reaction paths, very anharmonic surfaces      423—426
Potential-derived (PD) charges, semiempirical molecular orbital theory      733—737
Pou-Amerigo, R.      287—289(168) 296(168) 329
Power, W.J.      316(205) 330
Pragmatic analysis, transition metal structure, development of      337—338
Preuss, H.      17(41) 20(45) 36
Price, S.L.      734(171) 754
Primary charge separation, bacterial photosynthesis, real-time QMC techniques      65—68
Product operations, one-dimensional algebraic models      512
Projection-operator techniques, Redfield equation      82—84
Protein chromophore spectroscopy, CASPT2 technique      276—284
Protein chromophore spectroscopy, CASPT2 technique, imidazole molecule      280—282
Protein chromophore spectroscopy, CASPT2 technique, indole molecule      277—280
Protein chromophore spectroscopy, CASPT2 technique, linear conjugated polyenes and polycyclic aromatic hydrocarbons      284—287
Protein chromophore spectroscopy, CASPT2 technique, protein electron spectra      282—284
Proton transfer reactions, path-integral quantum transition-state theory (PI-QTST)      207—210
Proynov, E.      371(58) 376(58) 386
Pseudo-Hamiltonian approach, quantum Monte Carlo (QMC)      18
Pseudopotential techniques, centroid molecular dynamics (CMD), pairwise pseudopotentials      190—191
Pseudopotential techniques, diffusion Monte Carlo (DMC), nonlocal pseudopotentials      18—22
Pseudopotential techniques, quantum Monte Carlo (QMC)      17
Pseudopotential techniques, quantum Monte Carlo (QMC), clusters      29—31
Pseudopotential techniques, quantum Monte Carlo (QMC), nonlocal pseudopotentials      17—18
Pucci, R.      747(256) 757
Pulay, P.      390(7) 396(27) 447—448 713(65) 751
Pullman, A.      732(149) 753
Purugganan, M.D.      101(81) 133
Purvis, G.D.      339(10) 384
Qiu, S.Y.      685—692(129) 702
QR algorithm, Redfield equation solutions      89
Quack, M.      417(97) 450 567(53 58) 647
Quadratic configuration interaction with singles and doubles (QCISD) technique, first-row transition metal electronic structure      365—371
Quadratic configuration interaction with singles and doubles (QCISD) technique, second-row transition metal electronic structure      350—359
Quantum chemical calculations, semiempirical molecular orbital theory      735—737
Quantum correlation functions, Redfield equation solutions, classical bath models      91—93
Quantum dynamics, potential energy surfaces (PES)      392—393
Quantum dynamics, real-time quantum Monte Carlo analysis, quasiclassical degrees of freedom      55—57
Quantum mechanics, semiempirical molecular orbital theory      737—742
Quantum Monte Carlo (QMC) technique, applications      26—33
Quantum Monte Carlo (QMC) technique, applications, atoms and small molecules      26—28
Quantum Monte Carlo (QMC) technique, applications, clusters      29—31
Quantum Monte Carlo (QMC) technique, applications, extended systems      31—33
Quantum Monte Carlo (QMC) technique, applications, transition metal atoms      28—29
Quantum Monte Carlo (QMC) technique, atomic core treatment      15—22
Quantum Monte Carlo (QMC) technique, atomic core treatment, DMC and nonlocal pseudopotentials      19—22
Quantum Monte Carlo (QMC) technique, atomic core treatment, local pseudo-Hamiltonians      18
Quantum Monte Carlo (QMC) technique, atomic core treatment, nonlocal pseudopotentials      17—18
Quantum Monte Carlo (QMC) technique, excited states      22—23
Quantum Monte Carlo (QMC) technique, future trends in      33—34
Quantum Monte Carlo (QMC) technique, overview      2—5
Quantum Monte Carlo (QMC) technique, real-time path integration, bacterial photosynthesis, primary charge separation      65—68
Quantum Monte Carlo (QMC) technique, real-time path integration, blocking strategies      43—48
Quantum Monte Carlo (QMC) technique, real-time path integration, Brownian particle diffusion in periodic potential      68—72
Quantum Monte Carlo (QMC) technique, real-time path integration, electron transfer (ET) reactions, centroid quantum transition-state theory      59—64
Quantum Monte Carlo (QMC) technique, real-time path integration, future applications      72—73
Quantum Monte Carlo (QMC) technique, real-time path integration, overview      39—43
Quantum Monte Carlo (QMC) technique, real-time path integration, Quantum Monte Carlo (QMC) technique, real-time path integration, discretization techniques      51—54
Quantum Monte Carlo (QMC) technique, real-time path integration, quasi-classical degrees of freedom, elimination      54—57
Quantum Monte Carlo (QMC) technique, real-time path integration, sampling techniques      57—59
Quantum Monte Carlo (QMC) technique, real-time path integration, spin-boson dynamics      48—59
Quantum Monte Carlo (QMC) technique, real-time path integration, spin-boson models      49—51
Quantum Monte Carlo (QMC) technique, variants of      2 5—11 see
Quantum transition-state theory (QTST), centroid density      204—212
Quantum transition-state theory (QTST), centroid density, formalism      204—207
Quantum transition-state theory (QTST), centroid density, heterogeneous electron transfer      210—212
Quantum transition-state theory (QTST), centroid density, proton transfer (PT) in polar solvents      207—210
Quantum transition-state theory (QTST), centroid molecular dynamics (CMD)      180
Quantum transition-state theory (QTST), real-time QMC techniques, electron transfer (ET) reactions      60—64
Quapp, W.      407(68) 449
Quasiclassical centroid dynamics, real-time correlation functions      167—169
Quasiclassical degrees of freedom, real-time quantum Monte Carlo analysis, elimination of      54—57
Quelch, G.E.      300(185) 330
Rablen, P.R.      734(165) 754
Racah, G.      459(5—7) 474(7 19) 646
Racine, S.C.      324(211) 331
Radish, K.M.      715(69) 751
Radivoyevitch, T.      425(178) 452
Radom, L.      401(53) 403(54 57) 405(57) 422(57) 426(57) 428(53) 433(57) 449 712(61) 714(61) 722(61) 751
Raff, L.M.      425—426(180) 452
Raghavachari, K.      20(58) 28(87) 29(97) 30(58) 31(58) 37 339(12) 341(12 16—17) 350(25) 384—385 715(71) 716(78 80) 744(247) 751 757
Rahman, A.      182(71) 216
Rai, S.N.      418(124) 419(134) 422(124 155) 451—452
Rajagopal, G.      27(85) 32(100) 37—38
Raman intensities, algebraic models, benzene dimer case study      629—632
Raman intensities, algebraic models, one-dimensional algebraic models      556—566
Raman intensities, algebraic models, three-dimensional algebraic models      610—615
Rao, V.S.      404(58) 415(58) 419(58) 449
Rappe, A.K.      734(181) 754
Rauhut, G.      734(161—162) 736(213) 754—755
Rayez, J.-C.      747(261) 757
Rayleigh — Schroedinger perturbation expansion, semiempirical molecular orbital theory      719—722
Re, N.      287(169) 329
Reaction center (RC), bacterial photosynthesis, real-time QMC techniques      65—70
Reaction path Hamiltonian (RPH), potential energy surfaces (PES), dynamics      416—417
Reaction path Hamiltonian (RPH), potential energy surfaces (PES), intrinsic reaction paths and natural collision coordinates      412
Reaction paths, potential energy surfaces (PES), background      391
Reaction paths, potential energy surfaces (PES), bifurcations      407—408
Reaction paths, potential energy surfaces (PES), coordinates and path-based surfaces      408—415
Reaction paths, potential energy surfaces (PES), distinguished coordinates      403—407
Reaction paths, potential energy surfaces (PES), dynamics      415—427
Reaction paths, potential energy surfaces (PES), examples of      401—403
Reaction paths, potential energy surfaces (PES), future trends      446—447
Reaction paths, potential energy surfaces (PES), global surfaces      433—446
Reaction paths, potential energy surfaces (PES), higher-order interpolated surfaces      442—444
Reaction paths, potential energy surfaces (PES), interpolation surfaces      433—442
Reaction paths, potential energy surfaces (PES), invariant theory surfaces      433
Reaction paths, potential energy surfaces (PES), limitations      427—433
Reaction paths, potential energy surfaces (PES), minimum energy paths      400—401
Reaction paths, potential energy surfaces (PES), near-quadratic surfaces      416—423
Reaction paths, potential energy surfaces (PES), polyatomic surfaces      444—446
Reaction paths, potential energy surfaces (PES), principles of      391—396
Reaction paths, potential energy surfaces (PES), solution reactions      427
Reaction paths, potential energy surfaces (PES), steepest descent paths      397—400
Reaction paths, potential energy surfaces (PES), symmetry considerations      428—430
Reaction paths, potential energy surfaces (PES), very anharmonic surfaces      423—426
Reaction surface Hamiltonians, reaction paths      415
Real-time correlation functions, centroid density, dynamical properties      163
Real-time correlation functions, centroid molecular dynamics (CMD), harmonic theory and      164—165
Real-time correlation functions, centroid molecular dynamics (CMD), summary of techniques      167—169
Real-time QMC techniques, summary of      40
Rectilinear reaction path, construction of      407
Redfield equation, bath correlation functions      129—131
Redfield equation, canonical transformations, adiabatic techniques      120—121
Redfield equation, canonical transformations, effective bath coordinates (EBC)      122—127
Redfield equation, canonical transformations, small-polaron transformation      117—120
Redfield equation, canonical transformations, spin-boson systems      113—115
Redfield equation, canonical transformations, system-bath coupling, reduction strategies      112—113
Redfield equation, canonical transformations, variational optimization      116—117
Redfield equation, condensed-phase system quantum dynamics, limits of      80—81
Redfield equation, dynamical semigroup approach      87—88
Redfield equation, future applications      127—129
Redfield equation, numerical solution, bath models      89—94
Redfield equation, numerical solution, overview      88—89
Redfield equation, numerical solution, time propagation      94—98
Redfield equation, Redfield relaxation tensor      84—87
Redfield equation, reduced density matrix theory, standard approximations      82—84
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå