|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics |
|
|
Предметный указатель |
Pairwise potential, centroid molecular dynamics (CMD), pseudopotentials 190—191
Pairwise potential, tight-binding molecular dynamics energy models, carbon models 658—660
Pairwise potential, tight-binding molecular dynamics energy models, silicon models 656—658
Palke, W.E. 734(177) 754
Palladium compounds, electronic structure, relativistic effects 349—350
Palladium compounds, electronic structure, transition state 352—359
Palma, A. 484(29) 646
Panoff, R.M. 14(56) 36
Pantelides, S.T. 680(99) 701
Panzarini, G. 681(115) 701
Papaconstantopoulos, D.A. 694(137) 702
Papai, I. 371(58) 376(58) 386
Papousek, D. 601(78) 648
Parameter, 80 (PCI-80) values, transition metal electronic structure, applications 372—379 381—382
Parameter, 80 (PCI-80) values, transition metal electronic structure, first-row transition metal electronic structure 368—371
Parameter, 80 (PCI-80) values, transition metal electronic structure, future trends 383—384
Parameter, 80 (PCI-80) values, transition metal electronic structure, overview 340—341
Parameter, 80 (PCI-80) values, transition metal electronic structure, second-row transition metals 353—359
Parametrization strategies, semiempirical molecular orbital theory, applications 742—744
Parametrization strategies, semiempirical molecular orbital theory, overview 706—711
Pariser — Parr — Pople theories, semiempirical molecular orbital theory 720—722
Pariser, R. 276(118) 328
Park, T.J. 95(73) 97(73) 133
Parker, W. 741(240) 756
Parr, R.G. 342(19) 384 703(1) 720(1) 734(177) 749 754
Parrinello, M. 33(104) 38 182(71) 184(73) 188—189(73) 216 652(2) 670(47) 671(47 55—58) 672(47) 673(47 55) 674(55—56) 684(119) 698—699 702
Parris, P.E. 116(114) 134
Parson, W.W. 65(64) 76 92(67—68) 128(67—68) 133
Parsons, D.F. 431—433(200) 445(200) 453
Partridge, H. 221(3) 290(174) 324 329 336(6) 355(33) 356(33) 363(53) 367(33) 369(33 53) 371(6) 379(98) 384—387
Paschkewitz, J. 731—732(145) 753
Patchkovskii, S. 723(121) 745(253) 746(121) 753 757
Path centroid variable, summary of 138
Path-integral molecular dynamics (PIMD), centroid molecular dynamics (CMD), direct approach 182—186
Path-integral molecular dynamics (PIMD), centroid molecular dynamics (CMD), position-time correlation functions 193—196
Path-integral molecular dynamics (PIMD), partition functions 138
Path-integral molecular dynamics (PIMD), proton transfer in polar solvents 208—210
Path-integral Monte Carlo (PIMC) technique, centroid density compared with 161—162
Path-integral Monte Carlo (PIMC) technique, centroid molecular dynamics (CMD), direct approach 182—186
Path-integral Monte Carlo (PIMC) technique, centroid molecular dynamics (CMD), partition functions 138
Path-integral Monte Carlo (PIMC) technique, limits of 34
Path-integral Monte Carlo (PIMC) technique, proton transfer in polar solvents 208—210
Path-integral Monte Carlo (PIMC) technique, summary of 2 4 9—11
Path-integral quantum transition-state theory (PI-QTST), formalism 205—207
Path-integral quantum transition-state theory (PI-QTST), future trends 212—213
Path-integral quantum transition-state theory (PI-QTST), overview 204
Path-integral quantum transition-state theory (PI-QTST), proton transfer in polar solvents 207—210
Path-integral techniques, centroid methods see also "Centroid theory"
Path-integral techniques, centroid methods, activated dynamics and quantum transitionstate theory 204—212
Path-integral techniques, centroid methods, dynamical properties 162—204
Path-integral techniques, centroid methods, equilibrium properties 141—162
Path-integral techniques, centroid methods, overview 136—141
Path-integral techniques, condensed-phase system quantum dynamics 79
Path-integral techniques, real-time QMC techniques, bacterial photosynthesis, primary charge separation 65—68
Path-integral techniques, real-time QMC techniques, blocking strategies 43—48
Path-integral techniques, real-time QMC techniques, Brownian particle diffusion in periodic potential 68—72
Path-integral techniques, real-time QMC techniques, discretization techniques 51—54
Path-integral techniques, real-time QMC techniques, electron transfer (ET) reactions, centroid quantum transition-state theory 59—64
Path-integral techniques, real-time QMC techniques, future applications 72—73
Path-integral techniques, real-time QMC techniques, overview 39—43
Path-integral techniques, real-time QMC techniques, quasi-classical degrees of freedom, elimination 54—57
Path-integral techniques, real-time QMC techniques, sampling techniques 57—59
Path-integral techniques, real-time QMC techniques, spin-boson dynamics 48—59
Path-integral techniques, real-time QMC techniques, spin-boson models 49—51
Path-integral techniques, Redfield equation and 128—129
Pauli equation, transition metal compounds, CASSCF/CASPT2 studies 290
Pauslon, J.F. 731—732(145) 753
Pavelites, J.J. 736—737(189) 755
Pavese, M. 140(47) 197(47) 215
Paxton, A.T. 680(102) 701
Pechukas, P. 78(7—8) 88(62) 131 133 204(82) 206(82) 217 417(122) 451
Pecora, R. 176(65) 216
Pederson, M. 665(36) 699
Pedraza, D.F. 680(101) 701
Peng, Z. 404(60) 427(60 189) 449 453
Perdew, J.P. 355(35—36) 385
Peric, M. 221(4) 324
Periodic potential, Brownian particle diffusion, real-time QMC techniques 68—72
Permutation techniques, path-integral Monte Carlo (PIMC) 9—10
Persson, B.J. 244(28—29) 248(40) 287(28—29 169) 289(169 173) 291(28—29) 298(28—29) 301(29) 308(29) 320(29) 324(208) 325—326 329 331 380—381(101) 387
Perturbation theory see also "Multi-configurational second-order perturbation theory (CASPT2)" "Second-order
Perturbation theory, centroid density, diagrammatic representation 145—146
Perturbation theory, statistical mechanics, condensed-phase system quantum dynamics 80
Petrongolo, C. 268(91) 327
Petsko, G.A. 738(229) 756
Pettersson, L.G.M. 287(172) 329 355—356(34) 375(89) 385 387
Pettifor, D.G. 654—655(21) 658(21) 679(21) 698
Peyerimhoff, S.D. 221(4) 258(75) 269(91) 324 327 362(41) 385 401(51) 433(202) 449 453
Phase-space centroid density, defined 157—160
Phillips, J.C. 29(96) 38 652(8) 698
Phillis, J.G. 258(69 72—73) 259—260(73) 326—327
Photoelectron spectrosopy (PES), linear conjugated polyenes (LCP) 284—285
Piccito, G. 747(256) 757
Pickett, W.E. 17(40) 36 680(109) 701
Pierce, L. 260(78) 327
Pierce-Beaver, K. 371(59) 386
Pierleoni, C. 10(25) 36
Pierloot 380(101) 381(101—102) 387
Pierloot, K. 244(28—29) 248(41) 277(41) 287(28—29 170—171) 289—290(171) 291(28—29 170 177—178) 298(28—29) 299(178) 300(184 186—187) 301(29 170 177 188—191) 302(41) 305(195) 308(29 41 170 177) 310(202) 311(170) 316(177) 320(29) 325 329—330
Pine, A.S. 571(66) 648
Pintschovius, L. 677(94) 701
Platt, J.R. 276—277(199) 328
Pliva, J. 571(66) 648
Plutonium compounds, spin-orbit effects 364—365
Poeschl — Teller potential, algebraic models, geometric interpretation of algebraic models 632—638
Poeschl — Teller potential, algebraic models, one-dimensional algebraic models, multiple oscillators 532
Poeschl — Teller potential, algebraic models, U(2) algebraic model 484—494
Poeschl — Teller potential, algebraic models, U(4) algebraic model 504—511
Poeschl — Teller potential, algebraic models, vibron models of dynamical symmetry 483—484
Poeschl, G. 483(24) 646
Poetter, T. 710(51—52) 729(51—52) 751
Polak, R. 430(197) 453
Polanyi, J.C. 396(20—22) 416(20 22) 448
Polar solvents, proton transfer reactions, path-integral quantum transition-state theory (PI-QTST) 207—210
Politzer, P. 734(178) 754
Pollak, E. 113(100) 134 206(97) 217
Pollard, W.T. 80(39—40) 85(39—40) 86(39) 94(40) 95(39) 97(39—40) 98(39—40) 101(39) 104(40) 110(40) 111(40) 112(96) 128(120) 132 134
Pollock, E.L. 181(69) 184—185(69) 216
Polyatomic molecules, one-dimensional algebraic models 511—574
Polyatomic molecules, one-dimensional algebraic models, anharmonic couplings 566—574
Polyatomic molecules, one-dimensional algebraic models, electromagnetic transition intensities 556—566
Polyatomic molecules, one-dimensional algebraic models, multiple-oscillator anharmonic coupling 531—556
Polyatomic molecules, one-dimensional algebraic models, overview 511—513
Polyatomic molecules, one-dimensional algebraic models, two-oscillator anharmonic coupling 513—531
Polyatomic molecules, potential energy surfaces (PES), reaction paths and 444—446
Polyatomic molecules, three-dimensional algebraic models 575—625
Polyatomic molecules, three-dimensional algebraic models, electromagnetic transition intensities 610—615
Polyatomic molecules, three-dimensional algebraic models, Fermi resonances, anharmonic coupling 598—601
Polyatomic molecules, three-dimensional algebraic models, overview 575—576
Polyatomic molecules, three-dimensional algebraic models, rotational spectroscopy 601—610
Polyatomic molecules, three-dimensional algebraic models, tetratomic molecules 615—625
Polyatomic molecules, three-dimensional algebraic models, triatomic molecules, rovibrator coupling 576—598
Polyatomic molecules, vibrational spectroscopy 547—552
Polycyclic aromatic hydrocarbons (PAH), electronic spectroscopy, CASPT2 techniques 284—287
Polyparaphenylene (PPP), CASPT2 technique, interacting fragments 270
Polythiopene (PT), CASPT2, interacting fragments 270
Pople, J.A. 29(97) 38 246(30) 325 339(12) 341(12 16—17) 350(25) 384—385 703(4) 705(4 16) 706(29 31) 712(61) 713(4) 714(61) 722(61) 727(29) 744(247) 749—751 757
Popov, M.S. 68(65) 76
Population relaxation rate, Redfield equation solutions, DNA/metal complex long-range electron transfer 103—104
Population relaxation rate, Redfield equation solutions, two-level systems in stochastic baths 99—100
Porphin molecule, restricted active space SCF (RASSCF) 254—255
Porter, R.N. 425—426(180) 452
Position time correlation functions, centroid molecular dynamics (CMD), examples and applications 192—196
Position time correlation functions, centroid molecular dynamics (CMD), summary 175—176
Potential energy surfaces (PES), algebraic models 626
Potential energy surfaces (PES), background 390—391
Potential energy surfaces (PES), molecular spectroscopy 457—458
Potential energy surfaces (PES), reaction paths, bifurcations 407—408
Potential energy surfaces (PES), reaction paths, distinguished coordinates 403—407
Potential energy surfaces (PES), reaction paths, dynamics 415—427
| Potential energy surfaces (PES), reaction paths, examples of 401—403
Potential energy surfaces (PES), reaction paths, future trends 446—447
Potential energy surfaces (PES), reaction paths, global surfaces 433—446
Potential energy surfaces (PES), reaction paths, higher-order interpolated surfaces 442—444
Potential energy surfaces (PES), reaction paths, interpolation surfaces 433—442
Potential energy surfaces (PES), reaction paths, invariant theory surfaces 433
Potential energy surfaces (PES), reaction paths, limitations 427—433
Potential energy surfaces (PES), reaction paths, minimum energy paths 400—401
Potential energy surfaces (PES), reaction paths, near-quadratic surfaces 416—423
Potential energy surfaces (PES), reaction paths, polyatomic surfaces 444—446
Potential energy surfaces (PES), reaction paths, principles of 391—396
Potential energy surfaces (PES), reaction paths, solution reactions 427
Potential energy surfaces (PES), reaction paths, steepest descent paths 397—400
Potential energy surfaces (PES), reaction paths, symmetry considerations 428—430
Potential energy surfaces (PES), reaction paths, very anharmonic surfaces 423—426
Potential-derived (PD) charges, semiempirical molecular orbital theory 733—737
Pou-Amerigo, R. 287—289(168) 296(168) 329
Power, W.J. 316(205) 330
Pragmatic analysis, transition metal structure, development of 337—338
Preuss, H. 17(41) 20(45) 36
Price, S.L. 734(171) 754
Primary charge separation, bacterial photosynthesis, real-time QMC techniques 65—68
Product operations, one-dimensional algebraic models 512
Projection-operator techniques, Redfield equation 82—84
Protein chromophore spectroscopy, CASPT2 technique 276—284
Protein chromophore spectroscopy, CASPT2 technique, imidazole molecule 280—282
Protein chromophore spectroscopy, CASPT2 technique, indole molecule 277—280
Protein chromophore spectroscopy, CASPT2 technique, linear conjugated polyenes and polycyclic aromatic hydrocarbons 284—287
Protein chromophore spectroscopy, CASPT2 technique, protein electron spectra 282—284
Proton transfer reactions, path-integral quantum transition-state theory (PI-QTST) 207—210
Proynov, E. 371(58) 376(58) 386
Pseudo-Hamiltonian approach, quantum Monte Carlo (QMC) 18
Pseudopotential techniques, centroid molecular dynamics (CMD), pairwise pseudopotentials 190—191
Pseudopotential techniques, diffusion Monte Carlo (DMC), nonlocal pseudopotentials 18—22
Pseudopotential techniques, quantum Monte Carlo (QMC) 17
Pseudopotential techniques, quantum Monte Carlo (QMC), clusters 29—31
Pseudopotential techniques, quantum Monte Carlo (QMC), nonlocal pseudopotentials 17—18
Pucci, R. 747(256) 757
Pulay, P. 390(7) 396(27) 447—448 713(65) 751
Pullman, A. 732(149) 753
Purugganan, M.D. 101(81) 133
Purvis, G.D. 339(10) 384
Qiu, S.Y. 685—692(129) 702
QR algorithm, Redfield equation solutions 89
Quack, M. 417(97) 450 567(53 58) 647
Quadratic configuration interaction with singles and doubles (QCISD) technique, first-row transition metal electronic structure 365—371
Quadratic configuration interaction with singles and doubles (QCISD) technique, second-row transition metal electronic structure 350—359
Quantum chemical calculations, semiempirical molecular orbital theory 735—737
Quantum correlation functions, Redfield equation solutions, classical bath models 91—93
Quantum dynamics, potential energy surfaces (PES) 392—393
Quantum dynamics, real-time quantum Monte Carlo analysis, quasiclassical degrees of freedom 55—57
Quantum mechanics, semiempirical molecular orbital theory 737—742
Quantum Monte Carlo (QMC) technique, applications 26—33
Quantum Monte Carlo (QMC) technique, applications, atoms and small molecules 26—28
Quantum Monte Carlo (QMC) technique, applications, clusters 29—31
Quantum Monte Carlo (QMC) technique, applications, extended systems 31—33
Quantum Monte Carlo (QMC) technique, applications, transition metal atoms 28—29
Quantum Monte Carlo (QMC) technique, atomic core treatment 15—22
Quantum Monte Carlo (QMC) technique, atomic core treatment, DMC and nonlocal pseudopotentials 19—22
Quantum Monte Carlo (QMC) technique, atomic core treatment, local pseudo-Hamiltonians 18
Quantum Monte Carlo (QMC) technique, atomic core treatment, nonlocal pseudopotentials 17—18
Quantum Monte Carlo (QMC) technique, excited states 22—23
Quantum Monte Carlo (QMC) technique, future trends in 33—34
Quantum Monte Carlo (QMC) technique, overview 2—5
Quantum Monte Carlo (QMC) technique, real-time path integration, bacterial photosynthesis, primary charge separation 65—68
Quantum Monte Carlo (QMC) technique, real-time path integration, blocking strategies 43—48
Quantum Monte Carlo (QMC) technique, real-time path integration, Brownian particle diffusion in periodic potential 68—72
Quantum Monte Carlo (QMC) technique, real-time path integration, electron transfer (ET) reactions, centroid quantum transition-state theory 59—64
Quantum Monte Carlo (QMC) technique, real-time path integration, future applications 72—73
Quantum Monte Carlo (QMC) technique, real-time path integration, overview 39—43
Quantum Monte Carlo (QMC) technique, real-time path integration, Quantum Monte Carlo (QMC) technique, real-time path integration, discretization techniques 51—54
Quantum Monte Carlo (QMC) technique, real-time path integration, quasi-classical degrees of freedom, elimination 54—57
Quantum Monte Carlo (QMC) technique, real-time path integration, sampling techniques 57—59
Quantum Monte Carlo (QMC) technique, real-time path integration, spin-boson dynamics 48—59
Quantum Monte Carlo (QMC) technique, real-time path integration, spin-boson models 49—51
Quantum Monte Carlo (QMC) technique, variants of 2 5—11 see
Quantum transition-state theory (QTST), centroid density 204—212
Quantum transition-state theory (QTST), centroid density, formalism 204—207
Quantum transition-state theory (QTST), centroid density, heterogeneous electron transfer 210—212
Quantum transition-state theory (QTST), centroid density, proton transfer (PT) in polar solvents 207—210
Quantum transition-state theory (QTST), centroid molecular dynamics (CMD) 180
Quantum transition-state theory (QTST), real-time QMC techniques, electron transfer (ET) reactions 60—64
Quapp, W. 407(68) 449
Quasiclassical centroid dynamics, real-time correlation functions 167—169
Quasiclassical degrees of freedom, real-time quantum Monte Carlo analysis, elimination of 54—57
Quelch, G.E. 300(185) 330
Rablen, P.R. 734(165) 754
Racah, G. 459(5—7) 474(7 19) 646
Racine, S.C. 324(211) 331
Radish, K.M. 715(69) 751
Radivoyevitch, T. 425(178) 452
Radom, L. 401(53) 403(54 57) 405(57) 422(57) 426(57) 428(53) 433(57) 449 712(61) 714(61) 722(61) 751
Raff, L.M. 425—426(180) 452
Raghavachari, K. 20(58) 28(87) 29(97) 30(58) 31(58) 37 339(12) 341(12 16—17) 350(25) 384—385 715(71) 716(78 80) 744(247) 751 757
Rahman, A. 182(71) 216
Rai, S.N. 418(124) 419(134) 422(124 155) 451—452
Rajagopal, G. 27(85) 32(100) 37—38
Raman intensities, algebraic models, benzene dimer case study 629—632
Raman intensities, algebraic models, one-dimensional algebraic models 556—566
Raman intensities, algebraic models, three-dimensional algebraic models 610—615
Rao, V.S. 404(58) 415(58) 419(58) 449
Rappe, A.K. 734(181) 754
Rauhut, G. 734(161—162) 736(213) 754—755
Rayez, J.-C. 747(261) 757
Rayleigh — Schroedinger perturbation expansion, semiempirical molecular orbital theory 719—722
Re, N. 287(169) 329
Reaction center (RC), bacterial photosynthesis, real-time QMC techniques 65—70
Reaction path Hamiltonian (RPH), potential energy surfaces (PES), dynamics 416—417
Reaction path Hamiltonian (RPH), potential energy surfaces (PES), intrinsic reaction paths and natural collision coordinates 412
Reaction paths, potential energy surfaces (PES), background 391
Reaction paths, potential energy surfaces (PES), bifurcations 407—408
Reaction paths, potential energy surfaces (PES), coordinates and path-based surfaces 408—415
Reaction paths, potential energy surfaces (PES), distinguished coordinates 403—407
Reaction paths, potential energy surfaces (PES), dynamics 415—427
Reaction paths, potential energy surfaces (PES), examples of 401—403
Reaction paths, potential energy surfaces (PES), future trends 446—447
Reaction paths, potential energy surfaces (PES), global surfaces 433—446
Reaction paths, potential energy surfaces (PES), higher-order interpolated surfaces 442—444
Reaction paths, potential energy surfaces (PES), interpolation surfaces 433—442
Reaction paths, potential energy surfaces (PES), invariant theory surfaces 433
Reaction paths, potential energy surfaces (PES), limitations 427—433
Reaction paths, potential energy surfaces (PES), minimum energy paths 400—401
Reaction paths, potential energy surfaces (PES), near-quadratic surfaces 416—423
Reaction paths, potential energy surfaces (PES), polyatomic surfaces 444—446
Reaction paths, potential energy surfaces (PES), principles of 391—396
Reaction paths, potential energy surfaces (PES), solution reactions 427
Reaction paths, potential energy surfaces (PES), steepest descent paths 397—400
Reaction paths, potential energy surfaces (PES), symmetry considerations 428—430
Reaction paths, potential energy surfaces (PES), very anharmonic surfaces 423—426
Reaction surface Hamiltonians, reaction paths 415
Real-time correlation functions, centroid density, dynamical properties 163
Real-time correlation functions, centroid molecular dynamics (CMD), harmonic theory and 164—165
Real-time correlation functions, centroid molecular dynamics (CMD), summary of techniques 167—169
Real-time QMC techniques, summary of 40
Rectilinear reaction path, construction of 407
Redfield equation, bath correlation functions 129—131
Redfield equation, canonical transformations, adiabatic techniques 120—121
Redfield equation, canonical transformations, effective bath coordinates (EBC) 122—127
Redfield equation, canonical transformations, small-polaron transformation 117—120
Redfield equation, canonical transformations, spin-boson systems 113—115
Redfield equation, canonical transformations, system-bath coupling, reduction strategies 112—113
Redfield equation, canonical transformations, variational optimization 116—117
Redfield equation, condensed-phase system quantum dynamics, limits of 80—81
Redfield equation, dynamical semigroup approach 87—88
Redfield equation, future applications 127—129
Redfield equation, numerical solution, bath models 89—94
Redfield equation, numerical solution, overview 88—89
Redfield equation, numerical solution, time propagation 94—98
Redfield equation, Redfield relaxation tensor 84—87
Redfield equation, reduced density matrix theory, standard approximations 82—84
|
|
|
Реклама |
|
|
|