Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Borkovec, M.      60(50) 76 79(12) 131 204(84) 206(84) 217
Born — Oppenheimer approximation, molecular spectroscopy      457
Born — Oppenheimer approximation, reaction path techniques      446—447
Borowski, P.      324(210—211) 331
Bosch, E.      406(64) 419(64) 449
Bosin, A.      18(49) 19(49) 36
Boson operators, geometric interpretation of algebraic models      633—638
Boson operators, one-dimensional algebraic models, two oscillators, anharmonic coupling      513—531
Boson operators, U(4) algebraic model      495—496 500—511
Bossman, S.      101(83) 11 1(83) 133
Boston, I.E.      747(255) 757
Botschwana, P.      429(192) 453
Boucher, D.E.      681(114) 701
Bouma, W.J.      403(54) 449
Boussard, P.J.E.      338(8) 340—341(8) 384
Bowers, M.T.      429(195) 453 717(91—92) 752
Bowman, J.M.      393(13) 447
Boys, S.R.      27(82) 37
Brandemark, U.      366(49) 385
Brauman, J.I.      404(61) 449
Braveman, A.L.      429(196) 453
Bray, A.J.      113(103) 114(103) 134
Breckenridge, W.H.      363(44) 385
Breit correction, quantum Monte Carlo (QMC) calculations      27
Bressanini, D.      25(69) 37
Breton, J.      65(60) 76
Britten, A.Z.      278—279(128) 328
Brogli, F.      286—287(161) 329
Broughton, J.Q.      652(14) 664(14) 671(51—52) 698—699
Brown, F.B.      393(15) 417(119) 419(15) 448 450
Brown, R.D.      726(131) 753
Brown, T.L.      316(204) 330
Brownian particle diffusion, real-time QMC techniques, periodic potential      68—72
Bruehl, M.      93(72) 128(72) 133
Bruna, P.J.      258(63 75) 259(63) 262(63) 326—327
Brus, L.E.      270—271(100) 327
Buckminsterfullerene, semiempirical molecular orbital calculations      714—718
Buckyballs, tight-binding molecular dynamics energy models      677—679
Buda, F.      681(119) 702
Bueckert, H.      27(86) 37
Buehl, M.      713(64) 715(74) 745(74) 751
Buenker, R.J.      258(75) 268(91) 327
Bundy, F.P.      674(59) 700
Bunker, P.R.      413(81) 429(190) 449 453
Bunsenges, Ber.      379(92) 387
Burgers, P.C.      403(54—55) 449
Burgraff, L.W.      747(264) 757
Burstein, K.Y.      731(140) 753
Burton, N.A.      406(62) 427(62) 449
Bylaska, E.      30(98) 31(98) 38
CADPAC program, semiempirical molecular orbital calculations      712—714
Caffarel, M.      24(67) 37
Calaminic, P.      371(58) 376(58) 386
Caldeira, A.O.      48(33) 75 114(104 111) 134
Caldwell, N.J.      419(138) 423(138) 451
Calhoun, A.      140(50) 207(50 117) 210—211(50) 216 218
Callis, P.R.      255(51) 326 277(124—125) 328
Caminati, W.      278(130) 328
Camp, R.N.      418(127) 451
Campargue, A.      567(56) 647
Campbell, E.E.B.      747(258) 757
Canonical equilibrium distribution, centroid molecular dynamics (CMD), direct path-integral approaches      184—186
Canonical transformations, system-bath coupling strength, adiabatic techniques      120—121
Canonical transformations, system-bath coupling strength, effective bath coordinate (EBC)      121—127
Canonical transformations, system-bath coupling strength, overview      112—113
Canonical transformations, system-bath coupling strength, small-polaron transformation      117—120
Canonical transformations, system-bath coupling strength, spin-boson Hamiltonian      113—115
Canonical transformations, system-bath coupling strength, variational optimization      115—117
Canonical variational transition-state theory (CVT), potential energy surfaces (PES), reaction path dynamics      419
Cao, J.      136(3—8) 139(3—8 41) 140(3—8 48) 141(3—8) 142(3—6) 143(3) 145—153(3) 155—156(3) 157(3—5 8 59) 158(5) 159(3 5 59) 160(3 59) 161(3) 162(3—5) 163—164(3—5 7—8) 165(4 7—8) 166(4—6 8) 167—170(4—5 8) 168(4—6 8) 169(4—5 8) 170(4—6 8) 172(4—5) 173(4—6 8 48) 175(5) 176(4—6 8) 178(4—6 8) 179(4—5) 180(4—6 8) 181(3 48 68) 182(3 41) 183(4—6 8 48 68) 184(6 48) 185(6) 186(3—6 8 41) 187(6—7) 188(3 6 41) 189(6) 190(6—7) 191(6) 192(4—6) 193(6) 196(4—8) 197(6) 200(5) 200—202(4—8) 203(48) 204(3) 206(3) 212(3—8) 214—216
Capasso, F.      70(77) 76
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), application of      664—665
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), defects, surfaces, and hydrogenated systems      681—682
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), liquid carbon simulation      671—674
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), overview      652—653
Car, R.      26(75) 33(104) 37—38 184(73) 188—189(73) 216 652(2) 670(47) 671(47 55—58) 673(47 55) 674(55—56) 680(99) 681(119) 684(122) 685(122) 698—699 701—702
Carbon clusters, QMC calculations and      29—30
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, amorphous structures      674—675
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, defects, surfaces, and hydrogenated systems      679—682
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, genetic algorithm for structural optimization      689—693
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, liquid simulation      671—674
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, transferability      696—697
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, transferable model      658—660
Carbonyl compounds, electron spectroscopy, charge transfer states      312—316
Carbonyl compounds, electron spectroscopy, ligand interaction      306—309
Carbonyl compounds, electron spectroscopy, near-degeneracy effects and active space selection      295—296
Carbonyl compounds, electron spectroscopy, overview of CASPT2 technique      258—263
Carlson, J.      14(56) 16(38) 26(73) 36—37
Carmeli, B.      114(109—110) 119(109) 121(109—110) 134
Carrington, T.      415(87—88) 416(96) 419(96) 420(96) 450
Carroll, J.J.      364(46) 375(88) 385 387
Carter, E.A.      372(87) 387
Carter, S.      324(211) 331 390(1) 393(1) 426(1) 447
Cartesian coordinates, reaction paths, potential energy surfaces (PES)      444—445
Casey, S.M.      331 379—380(94) 387
Casimir operators, algebraic models and computer routines      639—644
Casimir operators, geometric interpretation of algebraic models      632—638
Casimir operators, Lie algebra      477—479
Casimir operators, one-dimensional algebraic models, electromagnetic transition intensities      561—566
Casimir operators, one-dimensional algebraic models, rovibrator coupling, bent triatomic molecules      591—592
Casimir operators, one-dimensional algebraic models, triatomic molecules      583—586
Casimir operators, one-dimensional algebraic models, U(2) algebraic model      489—494
Casimir operators, one-dimensional algebraic models, U(4) algebraic model      501—511
Casimir, H.      478(21) 646
CASPT2      see "Multiconfigurational second-order perturbation theory (CASPT2)"
Casserly, E.W.      263(84) 327
Castro, M.      371(58) 376(58) 386
Caswell, D.S.      280—282(135) 328
Cayley theorem, one-dimensional algebraic models, multiple oscillators, Majorana symmetry adaptation      539—547
CCSD(T) calculations, cluster configurations      30—31
CCSD(T) calculations, transition metal electronic structure, applications      371—372 379—382
CCSD(T) calculations, transition metal electronic structure, benchmark testing      342—345
CCSD(T) calculations, transition metal electronic structure, first-row transition metal electronic structure      366—371
CCSD(T) calculations, transition metal electronic structure, geometries      346—348
Centroid density, activated dynamics and quantum transition-state theory (QTST)      204—212
Centroid density, activated dynamics and quantum transition-state theory (QTST), formalism      204—207
Centroid density, activated dynamics and quantum transition-state theory (QTST), heterogeneous electron transfer      210—212
Centroid density, activated dynamics and quantum transition-state theory (QTST), proton transfer (PT) in polar solvents      207—210
Centroid density, diagrammatic representation      143—146
Centroid density, dynamical properties      162—204
Centroid density, dynamical properties, algorithms for CMD      180—191
Centroid density, dynamical properties, centroid molecular dynamics (CMD) method      166—180
Centroid density, dynamical properties, effective harmonic theory      164—166
Centroid density, dynamical properties, numerical examples and applications of CMD      191—204
Centroid density, equilibrium properties      141—162
Centroid density, equilibrium properties, averaging formalism      153—157
Centroid density, equilibrium properties, diagram renormalizarion      146—153
Centroid density, equilibrium properties, diagrammatic representation      143—146
Centroid density, equilibrium properties, numerical examples      160—162
Centroid density, equilibrium properties, phase-space perspective      157—160
Centroid density, future trends      212—213
Centroid density, real-time QMC techniques      59—64
Centroid density, summary of      138
Centroid molecular dynamics (CMD), algorithms      180—191
Centroid molecular dynamics (CMD), algorithms, direct approaches      182—186
Centroid molecular dynamics (CMD), algorithms, harmonic computation      186—190
Centroid molecular dynamics (CMD), algorithms, pairwise pseudopotentials      190—191
Centroid molecular dynamics (CMD), defined      140
Centroid molecular dynamics (CMD), development of      163—164
Centroid molecular dynamics (CMD), general time correlation functions      176—180
Centroid molecular dynamics (CMD), harmonic theory and      164—166
Centroid molecular dynamics (CMD), justification of      169—175
Centroid molecular dynamics (CMD), numerical examples and applications      191—204
Centroid molecular dynamics (CMD), numerical examples and applications, general correlation functions      197—201
Centroid molecular dynamics (CMD), numerical examples and applications, position correlation functions      192—196
Centroid molecular dynamics (CMD), numerical examples and applications, quantum self-diffusion constants      201—204
Centroid molecular dynamics (CMD), numerical examples and applications, velocity correlation functions      196—197
Centroid molecular dynamics (CMD), path-integral quantum transition-state theory (PI-QTST) compared with      206—207
Centroid molecular dynamics (CMD), position and velocity time correlation functions      175—176
Centroid molecular dynamics (CMD), semiclassical operators      179—180
Centroid molecular dynamics (CMD), summary of techniques      166—180
Ceperley, D.M.      4(5—6 8—9 11—12) 6(5 11) 7(6 8 11) 8(19) 9(23) 10(23—26) 11(29) 12(9) 14(99) 15(29) 17(43) 18(47 50) 19(52) 20(52) 21(62) 22(64) 23(65—66) 24(5 9 64 67 99) 27(9) 32(50 99) 35—38 181(69) 184—185(69) 216
Cerjan, C.L.      78(2) 98(2) 131 396(23) 16(95) 420(95) 448 450
Cernik, R.      741(239) 756
Ceulemans, A.      295(179) 309(179) 330
Chadi model, tight-binding molecular dynamics (TBMD), anharmonic effects in solids      667—669
Chadi, D.J.      653—654(19) 680(19) 698
Chadwick, J.E.      274—275(110) 328
Chakravarty, S.      48(34) 49(34) 54(41) 75 114(105 107) 134
Chan, C.K.      68(65 68) 76
Chan, C.T.      652(13) 654(13 20 23—24) 655(13 20 28) 656(24) 657(23 32—33) 658—661(23—24) 659(23) 660(23 53) 661(23) 662(13) 667(13 20 28) 668(20 28 44—45) 669(24 32—33) 670(20 33) 671(34 53) 672(34) 673(34 53) 674(53 60) 677(66 70 73—75 77—78 80—82 84) 679(24 77—82) 680(24 32) 681(113) 683(32) 685—692(129) 695(23 138) 698—702 747(259) 757
Chance, B.      110(93) 133
Chandler, D.      43(23) 50(36) 51(23 38) 53(38) 54(23 38) 60(49 51 53) 61(38 49) 62(54) 65(63) 68(66) 75—76 79(13) 91(64—65) 92(64—65) 104(13 65) 111(65) 113(13) 114(109—110) 119(109) 120(116—117) 121(109—110) 129(65) 131 133—134 136(18) 137(18 26) 138(18) 139—141(42) 142(18 52) 153(18) 155(18) 161(42) 180(42) 181(18 70) 182(18) 184—185(70) 202(278) 204(42 85 87—89) 206(42) 207(102 105) 208(18) 212(18) 215—217
Chandler, G.S.      726(132) 753
Chandra, A.K.      404(58) 415(58) 419(58) 449
Chandrasekhar.J.      427(187) 453
Chang, C.T.      278(131) 328
Chang, Y.-T.      406(63) 449
Chaplot, S.L.      677(94) 701
Chapuisat, X.      417(103) 450
Charge transfer states, CASPT2/CASSCF techniques, carbonyl compound electronic spectra      312—316
Charge transfer states, CASPT2/CASSCF techniques, nickel compound spectra      316—320
Chebysheff polynomial propagator, Redfield equation solutions      98
Chelikowsky, J.R.      652(8) 671(50) 693(135) 698—699 702
Chen, B.      27(80) 37
Chen, L.X.Q.      68(68) 76
Chen, W.      441(208) 453
Chen, Y.-M.      354(29) 385
Cherevier, M.      567(56) 647
Chetty, N.      680(110) 695(110) 701
Chiang, C.      17(39) 36
Chiarotti, G.      681(119) 702
Chicholm, C.D.H.      464(15) 471(15) 646
Chieux, P.      676—677(65) 700
Child, M.S.      527(36) 536(36) 542(36) 647
Chiocchetti, M.G.B.      18(47) 36
Chiu, S.S.-L.      401(48) 406(48 62) 427(62) 448—449
Chojnacki, H.      256—257(61) 326
Chong, D.P.      339(11) 384
Chou, M.Y.      654(25—26) 656(25) 658(25) 680(108) 694(25—26) 699 701
Christen, D.      280(138) 328
Christiansen, P.A.      17(44) 18(44) 19(53) 20(46) 28(93) 36 38
Christofferson, R.E.      255(52) 326
Chromium dimer, multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem      238—245
Chromium dimer, multiconfigurational second-order perturbation theory (CASPT2), transition metal compound spectroscopy      288—289
Chromium dimer, transition metal compound spectroscopy, CASPT2 techniques      320—322
Chromium dimer, transition metal compound spectroscopy, near-degeneracy effects and active space selection      291—301
Chromium dimer, transition metal electronic structure      379—382
Chu, Z.T.      92(67) 128(67) 133 207(106 111) 217—218
Ciccotti, G.      207(110) 218
Cieplak, P.      734(182—183) 754
Ciufolini, M.A.      715(68) 751
Cizek, J.      11(28) 36
Clancy, P.      657(35) 669(35) 699
Clar, E.      284(139) 329
Clark, L.B.      270—272(102) 327
Clark, P.A.      286—287(161) 329
Clark, T.      703(8) 709(8) 713(8) 734(161—162) 736(213) 749 754—755
Clary, D.C.      415(92) 450
Classical correlation functions, Redfield equation solutions, system-bath coupling      90—93
Clebsch — Gordon coefficient, one-dimensional algebraic models, two oscillators, anharmonic coupling      514—515 522—531
Clebsch — Gordon coefficient, one-dimensional algebraic models, U(4) algebraic model      497—511
Clebsch — Gordon coefficient, rovibrator coupling, triatomic molecules      580—586
Clementi, E.      8(83) 27(83) 37
Cline, R.E.Jr.      55(44) 75
Closs, G.L.      101(85) 133
Clusters, quantum Monte Carlo (QMC) calculations      29—31
Clusters, tight-binding molecular dynamics energy models      677—679
Coalson, R.D.      81(41) 86(41) 120(115) 121(115) 132 134
Cobalt dimers, transition metal compound spectroscopy, near-degeneracy effects and active space selection      291—301
Cohen, M.      14(35) 36
Cohen, M.L.      667(39) 699
Cohen, R.E.      694(137) 702
Coherence decay rate, Redfield equation solutions, two-level systems in stochastic baths      99—100
Coherent state realization, geometric interpretation of algebraic models      633—638
Coker, D.F.      78(6) 131 184—185(75) 201—202(75) 217
Coldwell, R.L.      28(91) 38
Collins, M.A.      401(41 51—53) 402(51) 403(51 56—57) 404(41) 405(56—57) 406(56) 415(56) 422(56—57) 423(56 166) 426(56—57) 428(52—53) 429(52 191) 431(191 200) 432(200) 433(52 57 191 200 203—204) 434(203) 437(203—204) 438(204) 439(203—204) 440(204) 442(209) 445(191 200 210) 448—449 452—453
Colombo, L.      657(34) 677(34 68) 681(115) 684—685(128) 699 700—702
Coltrin, M.E.      417(111) 419(111) 421(111) 450
Colwell, S.M.      417(102) 420(102 153) 450 452 712(60) 751
Comer, J.      259(77) 327
Complete active space SCF technique (CASSCF), CASPT2 comparisons, carbonyl compounds      258—262 312—316
Complete active space SCF technique (CASSCF), CASPT2 comparisons, interacting fragments, biphenyl and biothipene      269—276
Complete active space SCF technique (CASSCF), CASPT2 comparisons, intruder-state problem      237—244
Complete active space SCF technique (CASSCF), CASPT2 comparisons, LCPs and PAHs      284—287
Complete active space SCF technique (CASSCF), CASPT2 comparisons, multistate CASPT2      233—237
Complete active space SCF technique (CASSCF), CASPT2 comparisons, organic molecule spectroscopy      248—287
Complete active space SCF technique (CASSCF), CASPT2 comparisons, protein chromophores      277—284
Complete active space SCF technique (CASSCF), CASPT2 comparisons, reference wavefunction with transition metals      289—290
Complete active space SCF technique (CASSCF), CASPT2 comparisons, spectroscopic applications      246—247
Complete active space SCF technique (CASSCF), CASPT2 comparisons, transition metal compound spectroscopy      287—320 see
Complete active space SCF technique (CASSCF), CASPT2 comparisons, zeroth-order Hamiltonian      230—232
Complete active space SCF technique (CASSCF), limitations in organic molecule spectroscopy      253—255
Complete active space SCF technique (CASSCF), overview      220—223
Complete active space SCF technique (CASSCF), transition metal electronic structure      342—345
Complete active space SCF technique (CASSCF), transition metal electronic structure, applications      379—382
Complete active space SCF technique (CASSCF), transition metal electronic structure, first-row transition metals      365—371
Complete neglect of differential overlap (CNDO) approximation, semiempirical molecular orbital theory, general-purpose, applications      722—730
Complete neglect of differential overlap (CNDO) approximation, semiempirical molecular orbital theory, general-purpose, overview      705
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES)      429
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), invariant theory surfaces      433
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), multiple interpolation surfaces      435—437
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), polyatomic surfaces      445—446
Computational efficiency, algebraic models and      638—644
Computational efficiency, centroid molecular dynamics (CMD) algorithms      181—182
Computational efficiency, semiempirical molecular orbital theory      744—747
Conaway, W.E.      429(194) 453
Condensed-phase system quantum dynamics, canonical transformations, overview      78—81
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, bath model      89—94
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, numerical solution      88—98
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, overview      88—89
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, time propagation      94—98
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory      81—88
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, Redfield equation      82—84
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, Redfield relaxation tensor      84—87
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, semigroup approach      87—88
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications      98—112
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications, long-range electron transfer in DNA/metal complexes      101—112
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications, two-level system in fast stochastic bath      98—100
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction      112—127
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, adiabatic approaches      120—121
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, bath coordinates      121—127
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, small-polaron transformation      117—120
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, spin-boson Hamiltonian      113—115
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, twofold transformation strategy      112—113
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, variational transformations      115—117
Configuration functions (CFs), CASSCF technique      221
Configuration functions (CFs), multiconfigurational second-order perturbation theory (CASPT2), basic components      224—226
Configuration functions (CFs), multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem      237—244
Configuration interaction (CI), CASSCF technique      221
Configuration interaction (CI), CASSCF technique, many-body wavefunction      3
Configuration interaction (CI), multiconfigurational second-order perturbation theory (CASPT2), organic molecule spectroscopy      247—248
Configuration interaction (CI), multiconfigurational second-order perturbation theory (CASPT2), spectroscopic applications      246
Configuration interaction (CI), variational Monte Carlo (VMC) and      6
Convergence, reaction paths, potential energy surfaces (PES), interpolation surfaces      437—439
Cook, D.B.      726(133) 753
Cooper, I.L.      564(51) 633(106) 638(106) 647 649
Corchado, J.C.      417(106) 419(106) 422—423(106) 450
Cordonnier, M.      263(90) 327
Core electrons, quantum Monte Carlo treatment of      15—22
Core electrons, quantum Monte Carlo treatment of, DMC and nonlocal pseudopotentials      18
Core electrons, quantum Monte Carlo treatment of, local pseudo-Hamiltonians      18
Core electrons, quantum Monte Carlo treatment of, nonlocal pseudopotentials      17—18
Core-retained techniques, quantum Monte Carlo (QMC)      17
Coriolis interaction, three-dimensional algebraic models, rotational spectroscopy      606—610
Cornell, W.D.      734(182—183) 754
Cornwell, J.F.      468(17) 539(17) 646
Correlation functions, centroid density and      141—143
Correlation functions, Redfield equation solutions, bath correlation functions      129—131
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå