|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Borkovec, M. 60(50) 76 79(12) 131 204(84) 206(84) 217
Born — Oppenheimer approximation, molecular spectroscopy 457
Born — Oppenheimer approximation, reaction path techniques 446—447
Borowski, P. 324(210—211) 331
Bosch, E. 406(64) 419(64) 449
Bosin, A. 18(49) 19(49) 36
Boson operators, geometric interpretation of algebraic models 633—638
Boson operators, one-dimensional algebraic models, two oscillators, anharmonic coupling 513—531
Boson operators, U(4) algebraic model 495—496 500—511
Bossman, S. 101(83) 11 1(83) 133
Boston, I.E. 747(255) 757
Botschwana, P. 429(192) 453
Boucher, D.E. 681(114) 701
Bouma, W.J. 403(54) 449
Boussard, P.J.E. 338(8) 340—341(8) 384
Bowers, M.T. 429(195) 453 717(91—92) 752
Bowman, J.M. 393(13) 447
Boys, S.R. 27(82) 37
Brandemark, U. 366(49) 385
Brauman, J.I. 404(61) 449
Braveman, A.L. 429(196) 453
Bray, A.J. 113(103) 114(103) 134
Breckenridge, W.H. 363(44) 385
Breit correction, quantum Monte Carlo (QMC) calculations 27
Bressanini, D. 25(69) 37
Breton, J. 65(60) 76
Britten, A.Z. 278—279(128) 328
Brogli, F. 286—287(161) 329
Broughton, J.Q. 652(14) 664(14) 671(51—52) 698—699
Brown, F.B. 393(15) 417(119) 419(15) 448 450
Brown, R.D. 726(131) 753
Brown, T.L. 316(204) 330
Brownian particle diffusion, real-time QMC techniques, periodic potential 68—72
Bruehl, M. 93(72) 128(72) 133
Bruna, P.J. 258(63 75) 259(63) 262(63) 326—327
Brus, L.E. 270—271(100) 327
Buckminsterfullerene, semiempirical molecular orbital calculations 714—718
Buckyballs, tight-binding molecular dynamics energy models 677—679
Buda, F. 681(119) 702
Bueckert, H. 27(86) 37
Buehl, M. 713(64) 715(74) 745(74) 751
Buenker, R.J. 258(75) 268(91) 327
Bundy, F.P. 674(59) 700
Bunker, P.R. 413(81) 429(190) 449 453
Bunsenges, Ber. 379(92) 387
Burgers, P.C. 403(54—55) 449
Burgraff, L.W. 747(264) 757
Burstein, K.Y. 731(140) 753
Burton, N.A. 406(62) 427(62) 449
Bylaska, E. 30(98) 31(98) 38
CADPAC program, semiempirical molecular orbital calculations 712—714
Caffarel, M. 24(67) 37
Calaminic, P. 371(58) 376(58) 386
Caldeira, A.O. 48(33) 75 114(104 111) 134
Caldwell, N.J. 419(138) 423(138) 451
Calhoun, A. 140(50) 207(50 117) 210—211(50) 216 218
Callis, P.R. 255(51) 326 277(124—125) 328
Caminati, W. 278(130) 328
Camp, R.N. 418(127) 451
Campargue, A. 567(56) 647
Campbell, E.E.B. 747(258) 757
Canonical equilibrium distribution, centroid molecular dynamics (CMD), direct path-integral approaches 184—186
Canonical transformations, system-bath coupling strength, adiabatic techniques 120—121
Canonical transformations, system-bath coupling strength, effective bath coordinate (EBC) 121—127
Canonical transformations, system-bath coupling strength, overview 112—113
Canonical transformations, system-bath coupling strength, small-polaron transformation 117—120
Canonical transformations, system-bath coupling strength, spin-boson Hamiltonian 113—115
Canonical transformations, system-bath coupling strength, variational optimization 115—117
Canonical variational transition-state theory (CVT), potential energy surfaces (PES), reaction path dynamics 419
Cao, J. 136(3—8) 139(3—8 41) 140(3—8 48) 141(3—8) 142(3—6) 143(3) 145—153(3) 155—156(3) 157(3—5 8 59) 158(5) 159(3 5 59) 160(3 59) 161(3) 162(3—5) 163—164(3—5 7—8) 165(4 7—8) 166(4—6 8) 167—170(4—5 8) 168(4—6 8) 169(4—5 8) 170(4—6 8) 172(4—5) 173(4—6 8 48) 175(5) 176(4—6 8) 178(4—6 8) 179(4—5) 180(4—6 8) 181(3 48 68) 182(3 41) 183(4—6 8 48 68) 184(6 48) 185(6) 186(3—6 8 41) 187(6—7) 188(3 6 41) 189(6) 190(6—7) 191(6) 192(4—6) 193(6) 196(4—8) 197(6) 200(5) 200—202(4—8) 203(48) 204(3) 206(3) 212(3—8) 214—216
Capasso, F. 70(77) 76
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), application of 664—665
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), defects, surfaces, and hydrogenated systems 681—682
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), liquid carbon simulation 671—674
Car — Parrinello algorithm, tight-binding molecular dynamics (TBMD), overview 652—653
Car, R. 26(75) 33(104) 37—38 184(73) 188—189(73) 216 652(2) 670(47) 671(47 55—58) 673(47 55) 674(55—56) 680(99) 681(119) 684(122) 685(122) 698—699 701—702
Carbon clusters, QMC calculations and 29—30
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, amorphous structures 674—675
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, defects, surfaces, and hydrogenated systems 679—682
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, genetic algorithm for structural optimization 689—693
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, liquid simulation 671—674
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, transferability 696—697
Carbon clusters, tight-binding molecular dynamics (TBMD) energy models, transferable model 658—660
Carbonyl compounds, electron spectroscopy, charge transfer states 312—316
Carbonyl compounds, electron spectroscopy, ligand interaction 306—309
Carbonyl compounds, electron spectroscopy, near-degeneracy effects and active space selection 295—296
Carbonyl compounds, electron spectroscopy, overview of CASPT2 technique 258—263
Carlson, J. 14(56) 16(38) 26(73) 36—37
Carmeli, B. 114(109—110) 119(109) 121(109—110) 134
Carrington, T. 415(87—88) 416(96) 419(96) 420(96) 450
Carroll, J.J. 364(46) 375(88) 385 387
Carter, E.A. 372(87) 387
Carter, S. 324(211) 331 390(1) 393(1) 426(1) 447
Cartesian coordinates, reaction paths, potential energy surfaces (PES) 444—445
Casey, S.M. 331 379—380(94) 387
Casimir operators, algebraic models and computer routines 639—644
Casimir operators, geometric interpretation of algebraic models 632—638
Casimir operators, Lie algebra 477—479
Casimir operators, one-dimensional algebraic models, electromagnetic transition intensities 561—566
Casimir operators, one-dimensional algebraic models, rovibrator coupling, bent triatomic molecules 591—592
Casimir operators, one-dimensional algebraic models, triatomic molecules 583—586
Casimir operators, one-dimensional algebraic models, U(2) algebraic model 489—494
Casimir operators, one-dimensional algebraic models, U(4) algebraic model 501—511
Casimir, H. 478(21) 646
CASPT2 see "Multiconfigurational second-order perturbation theory (CASPT2)"
Casserly, E.W. 263(84) 327
Castro, M. 371(58) 376(58) 386
Caswell, D.S. 280—282(135) 328
Cayley theorem, one-dimensional algebraic models, multiple oscillators, Majorana symmetry adaptation 539—547
CCSD(T) calculations, cluster configurations 30—31
CCSD(T) calculations, transition metal electronic structure, applications 371—372 379—382
CCSD(T) calculations, transition metal electronic structure, benchmark testing 342—345
CCSD(T) calculations, transition metal electronic structure, first-row transition metal electronic structure 366—371
CCSD(T) calculations, transition metal electronic structure, geometries 346—348
Centroid density, activated dynamics and quantum transition-state theory (QTST) 204—212
Centroid density, activated dynamics and quantum transition-state theory (QTST), formalism 204—207
Centroid density, activated dynamics and quantum transition-state theory (QTST), heterogeneous electron transfer 210—212
Centroid density, activated dynamics and quantum transition-state theory (QTST), proton transfer (PT) in polar solvents 207—210
Centroid density, diagrammatic representation 143—146
Centroid density, dynamical properties 162—204
Centroid density, dynamical properties, algorithms for CMD 180—191
Centroid density, dynamical properties, centroid molecular dynamics (CMD) method 166—180
Centroid density, dynamical properties, effective harmonic theory 164—166
Centroid density, dynamical properties, numerical examples and applications of CMD 191—204
Centroid density, equilibrium properties 141—162
Centroid density, equilibrium properties, averaging formalism 153—157
Centroid density, equilibrium properties, diagram renormalizarion 146—153
Centroid density, equilibrium properties, diagrammatic representation 143—146
Centroid density, equilibrium properties, numerical examples 160—162
Centroid density, equilibrium properties, phase-space perspective 157—160
Centroid density, future trends 212—213
Centroid density, real-time QMC techniques 59—64
Centroid density, summary of 138
Centroid molecular dynamics (CMD), algorithms 180—191
Centroid molecular dynamics (CMD), algorithms, direct approaches 182—186
Centroid molecular dynamics (CMD), algorithms, harmonic computation 186—190
Centroid molecular dynamics (CMD), algorithms, pairwise pseudopotentials 190—191
Centroid molecular dynamics (CMD), defined 140
Centroid molecular dynamics (CMD), development of 163—164
Centroid molecular dynamics (CMD), general time correlation functions 176—180
Centroid molecular dynamics (CMD), harmonic theory and 164—166
Centroid molecular dynamics (CMD), justification of 169—175
Centroid molecular dynamics (CMD), numerical examples and applications 191—204
Centroid molecular dynamics (CMD), numerical examples and applications, general correlation functions 197—201
Centroid molecular dynamics (CMD), numerical examples and applications, position correlation functions 192—196
Centroid molecular dynamics (CMD), numerical examples and applications, quantum self-diffusion constants 201—204
Centroid molecular dynamics (CMD), numerical examples and applications, velocity correlation functions 196—197
Centroid molecular dynamics (CMD), path-integral quantum transition-state theory (PI-QTST) compared with 206—207
Centroid molecular dynamics (CMD), position and velocity time correlation functions 175—176
Centroid molecular dynamics (CMD), semiclassical operators 179—180
| Centroid molecular dynamics (CMD), summary of techniques 166—180
Ceperley, D.M. 4(5—6 8—9 11—12) 6(5 11) 7(6 8 11) 8(19) 9(23) 10(23—26) 11(29) 12(9) 14(99) 15(29) 17(43) 18(47 50) 19(52) 20(52) 21(62) 22(64) 23(65—66) 24(5 9 64 67 99) 27(9) 32(50 99) 35—38 181(69) 184—185(69) 216
Cerjan, C.L. 78(2) 98(2) 131 396(23) 16(95) 420(95) 448 450
Cernik, R. 741(239) 756
Ceulemans, A. 295(179) 309(179) 330
Chadi model, tight-binding molecular dynamics (TBMD), anharmonic effects in solids 667—669
Chadi, D.J. 653—654(19) 680(19) 698
Chadwick, J.E. 274—275(110) 328
Chakravarty, S. 48(34) 49(34) 54(41) 75 114(105 107) 134
Chan, C.K. 68(65 68) 76
Chan, C.T. 652(13) 654(13 20 23—24) 655(13 20 28) 656(24) 657(23 32—33) 658—661(23—24) 659(23) 660(23 53) 661(23) 662(13) 667(13 20 28) 668(20 28 44—45) 669(24 32—33) 670(20 33) 671(34 53) 672(34) 673(34 53) 674(53 60) 677(66 70 73—75 77—78 80—82 84) 679(24 77—82) 680(24 32) 681(113) 683(32) 685—692(129) 695(23 138) 698—702 747(259) 757
Chance, B. 110(93) 133
Chandler, D. 43(23) 50(36) 51(23 38) 53(38) 54(23 38) 60(49 51 53) 61(38 49) 62(54) 65(63) 68(66) 75—76 79(13) 91(64—65) 92(64—65) 104(13 65) 111(65) 113(13) 114(109—110) 119(109) 120(116—117) 121(109—110) 129(65) 131 133—134 136(18) 137(18 26) 138(18) 139—141(42) 142(18 52) 153(18) 155(18) 161(42) 180(42) 181(18 70) 182(18) 184—185(70) 202(278) 204(42 85 87—89) 206(42) 207(102 105) 208(18) 212(18) 215—217
Chandler, G.S. 726(132) 753
Chandra, A.K. 404(58) 415(58) 419(58) 449
Chandrasekhar.J. 427(187) 453
Chang, C.T. 278(131) 328
Chang, Y.-T. 406(63) 449
Chaplot, S.L. 677(94) 701
Chapuisat, X. 417(103) 450
Charge transfer states, CASPT2/CASSCF techniques, carbonyl compound electronic spectra 312—316
Charge transfer states, CASPT2/CASSCF techniques, nickel compound spectra 316—320
Chebysheff polynomial propagator, Redfield equation solutions 98
Chelikowsky, J.R. 652(8) 671(50) 693(135) 698—699 702
Chen, B. 27(80) 37
Chen, L.X.Q. 68(68) 76
Chen, W. 441(208) 453
Chen, Y.-M. 354(29) 385
Cherevier, M. 567(56) 647
Chetty, N. 680(110) 695(110) 701
Chiang, C. 17(39) 36
Chiarotti, G. 681(119) 702
Chicholm, C.D.H. 464(15) 471(15) 646
Chieux, P. 676—677(65) 700
Child, M.S. 527(36) 536(36) 542(36) 647
Chiocchetti, M.G.B. 18(47) 36
Chiu, S.S.-L. 401(48) 406(48 62) 427(62) 448—449
Chojnacki, H. 256—257(61) 326
Chong, D.P. 339(11) 384
Chou, M.Y. 654(25—26) 656(25) 658(25) 680(108) 694(25—26) 699 701
Christen, D. 280(138) 328
Christiansen, P.A. 17(44) 18(44) 19(53) 20(46) 28(93) 36 38
Christofferson, R.E. 255(52) 326
Chromium dimer, multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem 238—245
Chromium dimer, multiconfigurational second-order perturbation theory (CASPT2), transition metal compound spectroscopy 288—289
Chromium dimer, transition metal compound spectroscopy, CASPT2 techniques 320—322
Chromium dimer, transition metal compound spectroscopy, near-degeneracy effects and active space selection 291—301
Chromium dimer, transition metal electronic structure 379—382
Chu, Z.T. 92(67) 128(67) 133 207(106 111) 217—218
Ciccotti, G. 207(110) 218
Cieplak, P. 734(182—183) 754
Ciufolini, M.A. 715(68) 751
Cizek, J. 11(28) 36
Clancy, P. 657(35) 669(35) 699
Clar, E. 284(139) 329
Clark, L.B. 270—272(102) 327
Clark, P.A. 286—287(161) 329
Clark, T. 703(8) 709(8) 713(8) 734(161—162) 736(213) 749 754—755
Clary, D.C. 415(92) 450
Classical correlation functions, Redfield equation solutions, system-bath coupling 90—93
Clebsch — Gordon coefficient, one-dimensional algebraic models, two oscillators, anharmonic coupling 514—515 522—531
Clebsch — Gordon coefficient, one-dimensional algebraic models, U(4) algebraic model 497—511
Clebsch — Gordon coefficient, rovibrator coupling, triatomic molecules 580—586
Clementi, E. 8(83) 27(83) 37
Cline, R.E.Jr. 55(44) 75
Closs, G.L. 101(85) 133
Clusters, quantum Monte Carlo (QMC) calculations 29—31
Clusters, tight-binding molecular dynamics energy models 677—679
Coalson, R.D. 81(41) 86(41) 120(115) 121(115) 132 134
Cobalt dimers, transition metal compound spectroscopy, near-degeneracy effects and active space selection 291—301
Cohen, M. 14(35) 36
Cohen, M.L. 667(39) 699
Cohen, R.E. 694(137) 702
Coherence decay rate, Redfield equation solutions, two-level systems in stochastic baths 99—100
Coherent state realization, geometric interpretation of algebraic models 633—638
Coker, D.F. 78(6) 131 184—185(75) 201—202(75) 217
Coldwell, R.L. 28(91) 38
Collins, M.A. 401(41 51—53) 402(51) 403(51 56—57) 404(41) 405(56—57) 406(56) 415(56) 422(56—57) 423(56 166) 426(56—57) 428(52—53) 429(52 191) 431(191 200) 432(200) 433(52 57 191 200 203—204) 434(203) 437(203—204) 438(204) 439(203—204) 440(204) 442(209) 445(191 200 210) 448—449 452—453
Colombo, L. 657(34) 677(34 68) 681(115) 684—685(128) 699 700—702
Coltrin, M.E. 417(111) 419(111) 421(111) 450
Colwell, S.M. 417(102) 420(102 153) 450 452 712(60) 751
Comer, J. 259(77) 327
Complete active space SCF technique (CASSCF), CASPT2 comparisons, carbonyl compounds 258—262 312—316
Complete active space SCF technique (CASSCF), CASPT2 comparisons, interacting fragments, biphenyl and biothipene 269—276
Complete active space SCF technique (CASSCF), CASPT2 comparisons, intruder-state problem 237—244
Complete active space SCF technique (CASSCF), CASPT2 comparisons, LCPs and PAHs 284—287
Complete active space SCF technique (CASSCF), CASPT2 comparisons, multistate CASPT2 233—237
Complete active space SCF technique (CASSCF), CASPT2 comparisons, organic molecule spectroscopy 248—287
Complete active space SCF technique (CASSCF), CASPT2 comparisons, protein chromophores 277—284
Complete active space SCF technique (CASSCF), CASPT2 comparisons, reference wavefunction with transition metals 289—290
Complete active space SCF technique (CASSCF), CASPT2 comparisons, spectroscopic applications 246—247
Complete active space SCF technique (CASSCF), CASPT2 comparisons, transition metal compound spectroscopy 287—320 see
Complete active space SCF technique (CASSCF), CASPT2 comparisons, zeroth-order Hamiltonian 230—232
Complete active space SCF technique (CASSCF), limitations in organic molecule spectroscopy 253—255
Complete active space SCF technique (CASSCF), overview 220—223
Complete active space SCF technique (CASSCF), transition metal electronic structure 342—345
Complete active space SCF technique (CASSCF), transition metal electronic structure, applications 379—382
Complete active space SCF technique (CASSCF), transition metal electronic structure, first-row transition metals 365—371
Complete neglect of differential overlap (CNDO) approximation, semiempirical molecular orbital theory, general-purpose, applications 722—730
Complete neglect of differential overlap (CNDO) approximation, semiempirical molecular orbital theory, general-purpose, overview 705
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES) 429
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), invariant theory surfaces 433
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), multiple interpolation surfaces 435—437
Complete nuclear permutation inversion (CNPI) group, reaction paths, potential energy surfaces (PES), polyatomic surfaces 445—446
Computational efficiency, algebraic models and 638—644
Computational efficiency, centroid molecular dynamics (CMD) algorithms 181—182
Computational efficiency, semiempirical molecular orbital theory 744—747
Conaway, W.E. 429(194) 453
Condensed-phase system quantum dynamics, canonical transformations, overview 78—81
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, bath model 89—94
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, numerical solution 88—98
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, overview 88—89
Condensed-phase system quantum dynamics, canonical transformations, Redfield equation, time propagation 94—98
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory 81—88
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, Redfield equation 82—84
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, Redfield relaxation tensor 84—87
Condensed-phase system quantum dynamics, canonical transformations, reduced-density-matrix theory, semigroup approach 87—88
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications 98—112
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications, long-range electron transfer in DNA/metal complexes 101—112
Condensed-phase system quantum dynamics, canonical transformations, stochastic model applications, two-level system in fast stochastic bath 98—100
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction 112—127
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, adiabatic approaches 120—121
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, bath coordinates 121—127
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, small-polaron transformation 117—120
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, spin-boson Hamiltonian 113—115
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, twofold transformation strategy 112—113
Condensed-phase system quantum dynamics, canonical transformations, system-bath coupling strength reduction, variational transformations 115—117
Configuration functions (CFs), CASSCF technique 221
Configuration functions (CFs), multiconfigurational second-order perturbation theory (CASPT2), basic components 224—226
Configuration functions (CFs), multiconfigurational second-order perturbation theory (CASPT2), intruder-state problem 237—244
Configuration interaction (CI), CASSCF technique 221
Configuration interaction (CI), CASSCF technique, many-body wavefunction 3
Configuration interaction (CI), multiconfigurational second-order perturbation theory (CASPT2), organic molecule spectroscopy 247—248
Configuration interaction (CI), multiconfigurational second-order perturbation theory (CASPT2), spectroscopic applications 246
Configuration interaction (CI), variational Monte Carlo (VMC) and 6
Convergence, reaction paths, potential energy surfaces (PES), interpolation surfaces 437—439
Cook, D.B. 726(133) 753
Cooper, I.L. 564(51) 633(106) 638(106) 647 649
Corchado, J.C. 417(106) 419(106) 422—423(106) 450
Cordonnier, M. 263(90) 327
Core electrons, quantum Monte Carlo treatment of 15—22
Core electrons, quantum Monte Carlo treatment of, DMC and nonlocal pseudopotentials 18
Core electrons, quantum Monte Carlo treatment of, local pseudo-Hamiltonians 18
Core electrons, quantum Monte Carlo treatment of, nonlocal pseudopotentials 17—18
Core-retained techniques, quantum Monte Carlo (QMC) 17
Coriolis interaction, three-dimensional algebraic models, rotational spectroscopy 606—610
Cornell, W.D. 734(182—183) 754
Cornwell, J.F. 468(17) 539(17) 646
Correlation functions, centroid density and 141—143
Correlation functions, Redfield equation solutions, bath correlation functions 129—131
|
|
|
Ðåêëàìà |
|
|
|