Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics
Prigogine I. (ed.), Rice S.A. (ed.) — New Methods in Computational Quantum Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: New Methods in Computational Quantum Mechanics

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series. Advances in Chemical Physics, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 817

Äîáàâëåíà â êàòàëîã: 10.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Harmonic theory, centroid molecular dynamics (CMD)      164—166
Haro, E.      668(42) 670(42) 699
Harris, R.A.      81(45—47) 112(46) 113(45—46) 117(47) 132
Harrison, W.A.      653—655(18) 698
Hartke, B.      417(109) 422(109) 450
Hartland, G.V.      627(97—98) 648
Hartree — Fock approximation, CASPT2/CASSCF techniques, chromium dimer spectroscopy      320—322
Hartree — Fock approximation, CASPT2/CASSCF techniques, isoelectronic ligand field spectra      310—312
Hartree — Fock approximation, CASPT2/CASSCF techniques, spectroscopic applications      246—247
Hartree — Fock approximation, CASPT2/CASSCF techniques, zeroth-order Hamiltonian      227—232
Hartree — Fock approximation, potential energy surfaces (PES), background      390—391
Hartree — Fock approximation, quantum Monte Carlo (QMC) analysis, nonlocal pseudopotentials      17—18
Hartree — Fock approximation, quantum Monte Carlo (QMC) analysis, transition metal atoms      29
Hartree — Fock approximation, quantum Monte Carlo (QMC) analysis, transition metal electronic structure, limit correction      341—345
Hase, H.L.      710(44) 750
Hase, W.L.      204(83) 206(83) 217 393(14) 422(14 159—160) 447 452
Haselbach, E.      284(145—146) 285(145) 286(154) 329
Hashitsume, N.      168(62) 216
Hashmall, J.A.      745(251) 757
Haspeslagh, L.      310(203) 330
Hawkins, J.M.      717(87—88) 752
Hay, P.J.      28(94) 38 290(175) 329 360(39) 361(39) 385
Haynes, G.R.      207(122) 218
HBr molecule, U(2) algebraic model      490—494
HCN, three-dimensional algebraic model of      596—598 614—615
Head-Gordon, M.      246(30) 325 339(12) 341(12 16) 350(25) 384—385
Healy, E.E.      706(21) 709(21) 713(21) 721—723(21) 728(21) 731(21) 747(21) 750
Heath, J.R.      714(67) 718(98) 751—752
Hebecker, A.      256(60) 326
Hehre, W.J.      712(61) 714(61) 722(61) 725(125) 751 753
Heid, R.      677(94) 701
Heilbronner, E.      284(148) 286—287(161) 329
Heisenberg algebra, algebraic models, molecular spectroscopy, dynamical symmetries      467—468
Helgakar, T.      401—403(51) 449
Helgaker, T.      255(55) 326
Hellmann — Feynman theorem, tight-binding molecular dynamics (TBMD), carbon models      659—660
Hellmann — Feynman theorem, tight-binding molecular dynamics (TBMD), electronic structure calculations      685—689
Hellmann — Feynman theorem, tight-binding molecular dynamics (TBMD), electronic temperature      665—666
Hellmann — Feynman theorem, tight-binding molecular dynamics (TBMD), overview      653
Hellmann — Feynman theorem, tight-binding molecular dynamics (TBMD), standard matrix diagonalization      662—663
Hendrickx, M.      310(203) 330
Henglein, A.      429(192) 453
Henry, R.S.      741(240) 756
Henson, B.F.      627(97—98) 648
Herma, M.F.      42(19—20) 74—75 720(105 108) 721(108) 752
Herman — Wallis notation, three-dimensional algebraic models, electromagnetic intensities      612—615
Hermitian equations, one-dimensional algebraic models, Fermi resonances, anharmonic couplings      572—574
Hermitian equations, one-dimensional algebraic models, two oscillators, anharmonic coupling      514—531
Hermitian equations, quantum Monte Carlo (QMC), pseudo-Hamiltonian approach      18
Hermitian equations, Redfield relaxation tensor factorization      87
Hermitian equations, three-dimensional algebraic models, rotational spectroscopy      608—610
Hernandez, G.      668—669(43) 699
Hernandez, R.      157(59) 159—160(59) 216
Hertel, I.V.      747(258) 757
Hertz, R.A.      627(98) 648
Herzberg, G.      240—241(212) 331 353(26) 354(26) 363(26) 382(26) 385 582(71) 616(71) 648
Hess, B.A.      258(75) 263—264(86—87) 327 349(23) 362(41) 385
Heterogeneous electron transfer (ET), path-integral quantum transition-state theory (PI-QTST)      210—212
Hettich, R.L.      354(30) 356(30) 385
Heully, J.-L.      233(21) 325
Hexacarbonyls, electronic structure studies      371—372
Hibbs, A.R.      40(1) 74 136(1) 138—139(1) 141(1) 147(1) 149—150(1) 157(1) 181(1) 190(1) 212(1) 214
Hijanzi, N.H.      409(73) 449
Hilbert space, algebraic models, Lie algebra      470—479
Hilbert space, algebraic models, tetratomic molecules      617—625
Hiller, I.H.      401(48) 406(48 62) 427(62) 448—449
Hillis, P.C.      726(133) 753
Hilpert, K.      331 379(92) 387
Hinze, J.      476(20) 646
Hirata, F.      255(50) 326
Hiroike, K.      145(53) 152(53) 216
Hirsch, A.      715(70) 751
Ho, K.M.      652(13) 654(13 20 23—24) 655(13 20 28) 656(24) 657(23 32—33) 658(23—24) 659—661(23) 662(13) 667(13 20 28) 668(20 28 44—45) 669(24 32—33) 670(20 33) 671—672(33) 673(33 53) 674(53—54 60—63) 675—676(62—63) 677(62—63 66—82 84) 678(60—61 71—72 89 89) 679(24 80—82) 680(24 32) 681(72 113) 682(76 89) 683(32) 685—692(129) 693(84 132) 694(132) 695(23 138) 698—702 747(259) 757
Hochstrasser, R.M.      270—271(98—99) 327
Hofacker, G.L.      398(34) 409(34) 448 409(72) 449
Hoff, A.J.      65(60) 76
Hoffman, D.K.      41(8) 74 407(65) 449
Hohlneicher, G.      270(103 106) 272(103 106) 327—328
Holder, A.J.      706(24) 709(24) 713(24) 725(126) 744(24) 750 753
Holland, J.H.      702
Hollas, J.M.      277—279(121) 328
Holmes, J.L.      403(54—55) 449
Holten, D.      65(61) 76
Holzapfel, W.      65(62) 76
Hooker, T.M.      280—282(136) 328
Hopfield, J.J.      81(44) 101(84 90) 110(84) 113(44) 132—133
Hopping parameters, tight-binding molecular dynamics (TBMD), carbon models      658—660
Hopping parameters, tight-binding molecular dynamics (TBMD), silicon models      655—658
Hopping parameters, tight-binding molecular dynamics (TBMD), two-center approximation      695
Horn, H.      712(62) 751
Horsfield, A.P.      657(35) 669(35) 699
Horton, G.K.      139(27—28) 215
Horwitz, J.      277(123) 279(123) 328
Hougen, J.T.      413(81) 449
Houk, K.N.      741(241 243) 756
Hoy, A.R.      414(84) 423(84) 432(84) 449 631(101) 649
Hrovat, D.A.      324(209) 331
Hu, W.      427(182) 452
Hu, W.-P.      423(164) 452
Hu, X.      422(159—160) 452
Hu, Y.      65(59) 76
Hubbard, L.M.      416(96) 419—420(96) 450
Huber, J.R.      396(29) 448
Huber, K.P.      240—241(212) 331 353(26) 354(26) 363(26) 382(26) 385
Huber, R.      65(56) 76
Hueckel Hamiltonian, Redfield equation solutions, DNA/metal complex long-range electron transfer      103
Huffman, D.R.      714(66) 751
Hunter, J.M.      717(93) 752
Hurley, M.M.      19(53) 36
Huxley, P.      390(1) 393(1) 426(1) 44 7
Huyes, J.Y.      538(43) 572(43) 647
Hwang, J.-K.      207(111) 218
Hydroboration, transition metal electronic structure      372
Hydrocarbons, second-row transition metal interactions      375—379
Hydrogen bonding, semiempirical molecular orbital theory      731—737
Hydrogenated systems, tight-binding molecular dynamics energy models      679—682
Hyla-Krypsin, I.      310(203) 330
Hylton-McCreery, J.      255(52) 326
Hynes, J.T.      60(53) 76 93(72) 128(72) 133 204(83 93) 206(83) 207(105) 217 427(184—185) 452—453
Iachello, f.      459(8—9) 461(11) 483(25—26) 484(27) 537(27) 538(46—49) 542—543(27) 550(47) 552(50) 554(50) 571(47—48) 574(68) 576(69) 586(69) 591(75) 592(75) 598(50) 608(86) 611(89) 614(75 91) 617(68 92—94) 624(68 93) 625(94) 626(11 27) 627(100) 633(11) 636(11) 645(109—110 115—116) 646—649
Ibach, H.      668(41) 699
Ichinose, H.      680(105) 701
Iffer, R.      706(26) 710(26) 713(26) 722(26) 723(120) 725(26) 750 753
Ikemoto, I.      678(86) 700
Ilich, P.      277—279(122) 328
Illas, F.      732(150) 754
Im, H.      270(217) 331
Imaginary time action functional, path-integral theory      136—137
Imaginary-time correlation functions, centroid density      155—157
Imaginary-time correlation functions, centroid density, dynamical properties      162—163
Imaginary-time correlation functions, centroid density, numerical examples      160—162
Imaginary-time correlation functions, centroid molecular dynamics (CMD)      177—180
Imaginary-time correlation functions, phase-space centroid density      159—160
Imaginary-time propagator, centroid density and      141—143
Imaginary-time QMC techniques, summary of      40—41
Imaginary-time-path integrals, PIMC      9—11
Imamura, M.      286(158—159) 329
Imidazole molecule spectroscopy, CASPT2 technique      280—282
Improved canonical variational transition-state theory (ICVT)      419
Indole molecule spectroscopy, CASPT2 technique      277—280
Influence functional, path integration discretization, real-time quantum Monte Carlo analysis      53—54
Infrared transitions, algebraic models, benzene dimer case study      629—631
Infrared transitions, algebraic models, one-dimensional algebraic models, Fermi resonances, anharmonic couplings      569—574
Infrared transitions, algebraic models, one-dimensional algebraic models, generally      556—566
Infrared transitions, algebraic models, three-dimensional algebraic models      610—615
Ingold, G.-L.      53(40) 75
Integral approximation, semiempirical molecular orbital theory      705—711
Integral evaluation, semiempirical molecular orbital theory      706
Intensive boson operators, geometric interpretation of algebraic models      633—638
Interacting boson model, development of      459—460
Interacting double bonds, methylene-cyclopropene (MCP), CASPT2 technique      263—269
Interacting fragments, biphenyl and bithiophene, CASPT2 technique      269—276
Intermediate neglect or differential overlap (INDO) approximation, semiempirical molecular orbital theory, general-purpose applications      722—730
Intermediate neglect or differential overlap (INDO) approximation, semiempirical molecular orbital theory, overview      705 711
Internal (valence) coordinates, intrinsic reaction path (IRP) potentials      414—415
Internal (valence) coordinates, limits of reaction paths and      431
Interpolation surfaces, reaction paths, potential energy surfaces (PES), convergence      437—439
Interpolation surfaces, reaction paths, potential energy surfaces (PES), higher-order surfaces      442—444
Interpolation surfaces, reaction paths, potential energy surfaces (PES), multiple paths      435—437
Interpolation surfaces, reaction paths, potential energy surfaces (PES), techniques      433—435
Interpolation surfaces, reaction paths, potential energy surfaces (PES), test case      439—442
Intramolecular vibrational energy redistribution (IVR) processes, molecular spectroscopy      457
Intramolecular vibrational energy redistribution (IVR) processes, molecular spectroscopy, one-dimensional algebraic models, anharmonic couplings      567—574
Intrinsic reaction coordinate (IRC), potential energy surfaces (PES)      399—400
Intrinsic reaction path (IRP) vs. rectilinear reaction path      406—407
Intrinsic reaction path (IRP), bifurcations      407—408
Intrinsic reaction path (IRP), natural collision coordinates      408—412
Intrinsic reaction path (IRP), potential energy surfaces (PES)      398—400
Intrinsic reaction path (IRP), potential energy surfaces (PES), energy profile      401—402 404—405
Intrinsic reaction path (IRP), potential energy surfaces (PES), harmonic vibrational frequencies      401 403
Intrinsic reaction path (IRP), potential energy surfaces (PES), internuclear distances      401—402
Intrinsic reaction path (IRP), potential energy surfaces (PES), tunneling corrections in dynamics      420—422
Intrinsic reaction path (IRP), potentials in internal (valence) coordinates      414—415
Intruder-state problem, multiconfigurational second-order perturbation theory (CASPT2)      237—244
Intruder-state problem, organic molecule spectroscopy      251—255
Invariance composition laws, one-dimensional algebraic models      518—531
Invariant operators, Lie algebra      477—479
Invariant theory surfaces, reaction paths, potential energy surfaces (PES)      433
Inverse Wick rotation, centroid molecular dynamics (CMD), harmonic theory and      164—166
Inversion symmetry, reaction paths, potential energy surfaces (PES)      430
Iridium compounds, spin-orbit effects      364—365
Irreducible representations, algebraic models, Lie algebra      471—479
Irreducible representations, algebraic models, one-dimensional algebraic models, multiple oscillators, Majorana symmetry adaptation      538—547
Irreducible representations, algebraic models, one-dimensional algebraic models, two oscillators, anharmonic coupling      516—531
Irreducible representations, algebraic models, rovibrator coupling, triatomic molecules      579—586
Irreducible representations, algebraic models, U(2) algebraic model      486—494
Irreducible representations, algebraic models, U(4) algebraic model      500—511
Isaacson, A.D.      393(18) 417(100 118) 418(124) 419(130 151) 422(18 124 155) 423(151) 448 450—452
Isaev, A.N.      731(140) 753
Ischtwan, J.      401(41 51 402—403(51) 404(41) 423(166) 428(52—53) 429(52) 433(52 202—203) 434(203) 437(203) 439(203) 448—449 452—453
Ishida, K.      396(28) 448
Ishida, Y.      680(105) 701
Isoelectronic systems, CASPT2/CASSCF techniques, cyanide and carbonyl ligands      306 308—309
Isoelectronic systems, CASPT2/CASSCF techniques, isoelectronic species      309—312
Isoscalar factors, rovibrator coupling, triatomic molecules      580—586
Isospectral potentials, vibron models of dynamical symmetry      483—484
Ito, M.      271(101) 286(167) 327 329
Iwata, S.      286(157) 329
Jackson, K.      665(36) 699
Jacobi identity, Lie algebra      468—469 476—479
Jacobi identity, one-dimensional algebraic models, electromagnetic transition intensities      558—566
Jacobian matrix, semiempirical molecular orbital theory, parametrization      743—744
Jacobsen, K.W.      680(110 112) 681(112) 695(110 112) 701
Jafie, H.H.      706(30) 711(30) 750
Jahn — Teller distortion, tight-binding molecular dynamics energy models, defects, surfaces, and hydrogenated systems      680—682
Jai, Y.      68(65) 76
James, A.      32(100) 38
Jamorski, C.      371(58) 376(58) 386
Janke, W.      136(25) 215
Jarrell, M.      41(6) 74
Jarrold, M.F.      717(93) 752
Jasien, P.J.      423(167) 452
Jayatilaka, D.      390(8) 447 712(60) 751
Jean, J.M.      80(37—38) 86(37—38) 89(38) 92(38) 93(38) 94(38) 101(38) 132
Jensen, H.J.A.      401—403(51) 449
Jensen, J.Aa.      254(49) 255(55) 326
Jepsen, O.      695(111) 701
Jie, C.      706(23—24) 709(23—24) 713(23—24) 723(23) 744(23—24) 750
Joannopoulos, J.D.      680(97) 701
Johns, J.W.C.      413(81) 449
Johnson, B.G.      29(97) 38
Johnson, E.M.      28(90) 37
Johnson, R.P.      263—268(82) 327
Jolicard, G.      78(2) 98(2) 131
Jones, T.B.      284(150) 329
Jongeward, G.A.      41(11) 74
Jonsson, H.      207(118—119) 209(124) 218
Jordan, M.J.T.      433(204) 437—440(204) 442(209) 445(210) 453
Jorgensen, C.K.      295(181) 330
Jorgensen, P.      390(3) 401(51) 447 449
Jorgensen, W.L.      417(104) 427(186—188) 450 453
Jorgenson, P.      254(49) 326
Jortner, J.      65(58) 68(67) 76 104(92) 111(92) 133
Joseph, T.      418(124) 422(124 155) 423(169) 451—452
Jost, R.      645(108) 649
Juffer, A.H.      737(228) 756
Jug, K.      703(10) 706(25—26) 710(25—26) 713(25—26) 722(26) 723(120) 725(25—26) 744(25) 749—750 753
Jungen, M.      250(45) 326
Kadanoff — Baym contour, path integration discretization, real-time quantum Monte Carlo analysis      51—54
Kainosho, M.      678(86) 700
Kaiser, W.      65(62) 76
Kalia, R.K.      677(91—93) 679(91—93) 683(93) 701
Kalos, M.H.      4(3—4 11—12) 6(11) 7(4 11) 8(4) 25(68 70—71) 35 37
Kamal, M.      652(8) 698
Kane, C.L.      70(74) 76
Kappes, M.M.      717(81) 752
Kapral, R.      207(110) 218
Karelson, M.M.      255(58) 326 736(199—203) 755
Karlsson, C.A.M.      372(78) 386
Karlstroem, G.      222(11) 255(56 59) 256(11) 325—326
Karplus, M.      401(47) 406(47) 448 736(187) 737(227) 738(227 229) 739—740(227) 755—756
Karrlein, W.      78(2) 98(2) 131
Kato, S.      255(50) 326
Katritzky, A.R.      736(199—200 203) 755
Kaufmann, K.      250(45) 326
Kawai, R.      30(98) 31(98) 38
Kaya, K.      271(101) 327
Keck, J.      204(90) 217
Keck, J.C.      418(123) 451
Keirstead, W.P.      427(185) 453
Keldysh contour, path integration discretization, real-time quantum Monte Carlo analysis      52
Kelley, P.L.      83(49) 132
Kelley, S.G.      429(196) 453
Kellman, M.E.      567(59—62) 647
Kelloe, V.      222(11) 256(11) 325 710(46) 750
Kelly, P.      680(99) 701
Kelsall, B.J.      286(160) 329 286—287(166) 329
Kemper, P.R.      429(195) 453
Kenny, S.D.      27(85) 32(100) 37—38
Keske, J.M.      101(87) 133
Keyes, T.      163(60) 216
Khan, F.S.      652(14) 664(14) 698
Khandekar, D.C.      136(16) 215
Khor, K.E.      652(10) 698
Kieu, T.D.      45(31) 75
Kikuchi, K.      678(86) 700
Kilb, M.      706(37) 725(37) 727—729(37) 731(37) 743(37) 750
Kilpatrick, N.J.      423(163) 452
Kim, E.      681(117) 701
Kim, H.J.      60(53) 76 207(105) 217
Kim, M.S.      286(164) 329
Kim, S.G.      677(85) 700
Kim, Y.-W.      404(59) 425(59) 449
King, H.F.      418(127) 451
Kinoshita, M.      680(103) 701
Kira, A.      286(158—159) 329
Kirmaier, C.      65(61) 76
Klamt, A.      736(214) 755
Klein, D.J.      716(77) 751
Klein, M.L.      181(70) 184—185(70) 216
Klein, R.      286(163) 329
Kleinert, H.      136(10 23—25) 139(23) 141(23 51) 143(23) 146(23) 150(23) 164(23) 182(23) 212—213(23) 214—216
Klemperer, W.      567(54) 647
Klessinger, M.      710(51—52) 729(51—52) 751
Klippenstein, S.J.      404(59) 425(59 174—179) 449 452 538(44) 574(44) 647
Klopman — Ohno scaling, semiempirical molecular orbital theory, general-purpose applications      727—730
Klopman, G.      708(40) 721(40) 723(40) 726(40) 734(40) 750
Knowles, P.J.      367—369(52) 379—380(97) 385 387 712(60) 751
Kobayashi, H.      371(58) 376(58) 386
Kobayashi, R.      712(60) 751
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå