| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 154 |
| Ueno K. — Algebraic Geometry. From varieties to schemes (vol. 1) | 78 |
| Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 40 |
| Dummit D.S., Foote R.M. — Abstract algebra | 359ff, 788ff |
| Berger M. — A Panoramic View of Riemannian Geometry | 720 |
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 522 |
| Ewald G. — Combinatorial convexity and algebraic geometry | 269 |
| Yale P.B. — Geometry and Symmetry | 261 |
| Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | Appendix T |
| Brown W.C. — Matrices over communicative rings | 140 |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 40, 87 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 76 |
| Lee J.M. — Differential and Physical Geometry | 151, 567, 569, 572 |
| Hajime Sato — Algebraic Topology: An Intuitive Approach | 61 |
| Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 28 |
| Dixon J.D. — Problems in Group theory | 69 |
| MacLane S. — Categories for the working mathematician | 124, 159, 222 |
| Matsumura H. — Commutative ring theory | 26, 45, 53, 266 |
| Schenck H. — Computational algebraic geometry | 88—91, 69 |
| Kodaira K. — Complex manifolds and deformation of complex structures | 103, 104 |
| Felsager B. — Geometry, particles and fields | 310,314 |
| Hoffman K., Kunze R. — Linear algebra | 168 |
| Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 268 |
| Majid S. — Foundations of Quantum Group Theory | 2 |
| Kuttler K. — Introduction to linear algebra for mathematicians | 224 |
| Lutkepohl H. — Handbook of Matrices | 3, 279 |
| Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 15, 153, 155, 182, 216 |
| Coutinho S.C. — A primer of algebraic D-modules | 109 |
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 628 |
| Meyer C.D. — Matrix analysis and applied linear algebra | 380, 597 |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 62, 63, 392, 565—568 |
| Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | 185, 221, 276, 285 |
| Kreuzer M., Robbiano L. — Computational commutative algebra 1 | 184 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 12 |
| Pareigis B. — Categories and functors | 33, 56 |
| Conte R. — Painleve Property: One Century Later | 375 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 577, 680 |
| MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 356ff |
| Melrose R. — The Atiyah-Singer index theorem (part 3) | 32 |
| Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 123 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 18, 19, 75, 79, 115 |
| Katznelson Y. — Introduction to Harmonic Analysis | 249 |
| Sadd M.H. — Elasticity: theory, applications, and numerics | 10 |
| Watkins D. — Fundamentals of matrix computations | 556 |
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 148—149 |
| Pugovecki E. — Quantum mechanics in hilbert space | 303 |
| Diaconis P. — Group Representations in Probability and Statistics | 8, 44 |
| Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 520 |
| Pedersen G.K. — C*-algebras and their automorphism groups | 5 |
| Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 290, 337 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 525 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 235, 273 |
| Honerkamp J. — Statistical Physics | 331 |
| Grillet P.A. — Abstract Algebra | 435, 434—448 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 85 |
| Zimand M. — Computational Complexity: A Quantitative Perspective | 112, 114 |
| Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 242 |
| Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 67 |
| Hedayat A.S., Sloane N.J.A., Stufken J. — Orthogonal Arrays: Theory and Applications | 123, 149 |
| Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 140, 150 |
| Torretti R. — Relativity and Geometry | 349 note15 |
| Cartan E., Eilenberg S. — Homological Algebra, Vol. 19 | 21 |
| Hilton P.J., Stammbach U. — A course in homological algebra | 109 |
| van den Essen A. — Polynomial automorphisms and the Jacobian conjecture | 278 |
| Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 26 |
| Hatcher A. — Algebraic Topology | 218, 328 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 54 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 303 |
| Lorenz M. — Multiplicative Invariant Theory | 16 |
| Higson N., Roe J. — Analytic K-Homology | 80 |
| Araki H. — Mathematical Theory of Quantum Fields | 206 |
| Brown K.S. — Cohomology of Groups | 7, 10, 55, 107, 137 |
| Surowski D. — Workbook in higher algebra | 161 |
| Freyd P. — Abelian categories. Introduction to theory of functors | 86 |
| Krantz S.G. — Function Theory of Several Complex Variables | 499 |
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 312 |
| Chui C.K., Chan A.K., Liu C.S. — Wavelet Toolware: Software for Wavelet Training | 40 |
| Ueno K. — Algebraic Geometry 2: Sheaves and Cohomology | 21 |
| Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns | 15 |
| Light W.A., Cheney E.W. — Approximation Theory in Tensor Product Spaces | 1 |
| Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps | 14 |
| Tennison B.R., Hitchin N.J. (Ed) — Sheaf Theory | 98—99, 105, 108 |
| Thaller B. — Visual quantum mechanics | 178 |
| Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 326 |
| Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | I 21 |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 197, 201 |
| Chevalley C., Cartier P. — Algebraic Theory of Spinors and Clifford Algebras: Collected Works of Claude Chevalley. Volume 2 | 25, 29, 32 |
| Engel K.-J., Nagel R. — Short Course on Operator Semigroups | 230 |
| Finch S.R. — Mathematical constants | 191 |
| Murty M.R., Esmonde J. — Problems in algebraic number theory | 52, 223 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 10, 209, 232 |
| Gudder S.P. — Stochastic methods in quantum mechanics | 25 |
| Vick J.W. — Homology theory. An introduction to algebraic topology | 66 |
| Stone C.J.D. — Course in Probability and Statistics | 595, 597 |
| Cohn P.M. — Algebraic numbers and algebraic functions | 54 |
| Arvo J. — Graphics gems (vol. 2) | 333—334 |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 8, 151 |
| Kirk D. — Graphics gems (Vol. 3) | 85 |
| Van der Put M., Singer M.F. — Galois Theory of Linear Differential Equations | 51, 361 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-17 |
| Laumon G. — Cohomology of Drinfeld modular varieties (Part 1) | 334 |
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 66 |
| Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 168, 189 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 194 |
| Weisfeiler B. — On Construction And Identification Of Graphs | G 3 |
| Howie J.M. (ed.) — An Introduction to Semigroup Theory | 224 |
| Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 772 |
| Kerler Th., Lyubashenko V.V. — N on-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners | 218 |
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 2, 23 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 142, 143, 144, 145 |
| Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 217 |
| Bleecker D. — Gauge Theory and Variational Principles | 109 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 48, 295 |
| Simon B. — Representations of Finite and Compact Groups | 29, 253 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 44 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | see also “Product state” |
| Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1 | 138, 139, 256, 377 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 74, 80, 84, 87, 137 |
| Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 184 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 57—58, 61, 247 |
| Köthe G. — Topological vector spaces I | 76 |
| Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 236 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 242 |
| Hannan E. J. — Multiple time series | 516—518 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 116 |
| Munkres J.R. — Analysis on manifolds | 223 |
| Suzuki M. — Group Theory I | 264 |
| Ludvigsen M. — General relativity. A geometric approach | 52 |
| Alperin J.L., Bell R.B. — Groups and Representations, Vol. 0 | 111 |
| Stone M. — The physics of quantum fields | 6 |
| Saad Y. — Iterative methods for sparse linear systems | 411 |
| Beachy J.A. — Abstract Algebra II | 84 |
| Husain T., Khaleelulla S.M. — Barrelledness in Topological and Ordered Vector Spaces | 24 |
| Luck W. — Transformation Groups and Algebraic K-Theory | 166 |
| Moerdijk I. — Classifying Spaces and Classifying Topoi | 25, 66 |
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 166, 175—177 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 181 |
| Krause G.R., Lenagan T.H. — Growth of Algebras and Gelfand-Kirillov Dimension | 28, 165 |
| Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 289, 308ff. |
| Marcus M. — Finite dimensional multilinear algebra. Part I | 14 |
| Silvester J.R. — Introduction to Algebraic K-Theory | 12 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 51, 54 |
| Warshauer M.L. — The Witt Group of Degree K Maps and Asymmetric Inner Product Spaces | 23 |
| Granas A., Dugundji J. — Fixed Point Theory | 611 |
| Beltrametti E.G., Cassinelli G. — The Logic of Quantum Mechanics (Encyclopedia of Mathematics and Its Applications - Vol 15) | 61, 263—264 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 196—197, 206—207 |
| Abhyankar S.S. — Local Analytic Geometry | 359, 363, 366, 379 |
| Tamura I. — Topology of lie groups, I and II | 138 |
| Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 26 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 142—145, 7, 239, 416 |
| Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling | 52, 318 |
| Stratton J.A. — Electromagnetic Theory | 82 |
| Hazewinkel M. — Handbook of Algebra (part 2) | 49, 163, 585, 695 |
| Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 388 |
| Nagata M. — Field Theory | 100, 101, 139 |
| O'Neill B. — The Geometry of Kerr Black Holes | 9 |
| Suzuki M. — Group Theory II | 264 |
| Hormander L. — The analysis of linear partial differential operators I | 126, 127, 267 |
| Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 17 |
| Aschbacher M. — Finite Group Theory | 118 |
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 25, 93, 94 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 28 |
| Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 44 |
| Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 11 |
| Hatfield B. — Quantum field theory of point particles and strings | 558 |
| Mac Lane S., Birkhoff G.D. — Algebra | 293, 319ff, 324 |
| Buhmann M.D. — Radial Basis Functions : Theory and Implementations | 45 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 104, 168, 251 |
| Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 191—192 |
| Anderson G.A., Granas A. — Fixed Point Theory | 611 |
| Paeth A.W. (ed.) — Graphics gems (volume 5) | II.333-II.334, III.85 |
| Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 13 |
| Cälugäreanu G., Hamburg P. — Exercises in Basic Ring Theory | 37 |
| Turaev V.G. — Quantum Invariants of Knots and 3-Manifolds | 18 |
| Conte R. — The Painlevé property: One century later | 375 |
| Hungerford T.W. — Algebra | 208ff |
| Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 8 |
| Farin G. — Curves and surfaces for computer aided geometric design | 232, 342 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 557 |
| Pavičić M. — Quantum Computation and Quantum Communication: Theory and Experiments | 40 |
| Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 12 |
| Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 380, 597 |
| Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 20, 22 |
| Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 322 |
| Steeb W., Hardy Y. — Problems and Solutions in Quantum Computing and Quantum Information | 14 |
| Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) | 72 |
| Kaplansky I. — Fields and rings | 150 |
| Arbib M.A., Manes E.G. — Arrows structures and functors. The categorical imperative | 141 |
| Dold A. — Lectures on Algebraic Topology | 142, 161, 221, 222 |
| Lee J.M. — Differential and physical geometry | 151, 567, 569, 572 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 169, 170 |
| Astfalk G. — Applications on Advanced Architecture Computers | 196, 248 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 40, 87 |
| Browder A. — Mathematical Analysis: An Introduction | 271 |
| Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 65 |
| Kock J. — Frobenius Algebras and 2-D Topological Quantum Field Theories | 80 |
| Milnor J., Husemoller D. — Symmetric Bilinear Forms | 10, 47, 73, , 111 |
| Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 1 |
| Stanley R.P. — Enumerative Combinatorics: Volume 2 | (see Product, tensor) |
| Cohn P.M. — Algebraic Numbers and Algebraic Functions | 54 |
| Liu B., Lai H.-J. — Matrices in Combinatorics and Graph Theory (Network Theory and Applications Volume 3) | 24, 181 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 96 |
| Stratton J.A. — Electromagnetic Theory | 82 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 139, 140 |
| Spanier E.H. — Algebraic Topology | 7, 213—217 |
| IItaka S. — Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties | 11, 37 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 254 |
| Chevalley C. — The Construction and Study of Certain Important Algebras | 23, 27, 30 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 305 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 17 |
| Volkmer H. — Multiparameter Eigenvalue Problems And Expansion Theorems | 76, 88, 108, 117 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 83—86, 98, 501, 599, 629 |
| Graham A. — Kronecker products and matrix calculus: with applications | 21 |
| Lang S. — Topics In Cohomology Of Groups | 21 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 81 |
| Wen-tsun W. — Rational Homotopy Type: A Constructive Study Via the Theory of the I*-Measure | 21 |
| Schneider H. (ed.) — Recent advances in matrix theory | 62 |
| Vasil'ev V. A., Sossinski A. — Introduction to Topology | 138 |
| Krantz S.G. — Function theory of several complex variables | 499 |
| Leeuwen J.V. — Handbook of Theoretical Computer Science: Algorithms and Complexity | 651 |
| Carroll R.W. — Mathematical physics | 347 |
| Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 2, 4 |
| Lounesto P. — Clifford algebras and spinors | 197, 201 |
| Leeuwen J. (ed.), Meyer A.R., Nivat M. — Algorithms and Complexity, Volume A | 651 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 49, 147 |
| Magnus W., Karrass A., Solitar D. — Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations | 363 |
| Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 5 |
| Loomis L.H., Sternberg S. — Advanced calculus | 305f |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 18 |
| Lane S.M. — Mathematics, form and function | 205 |
| Dauns J. — A Concrete Approach to Division Rings | 3, 23, 27, 31, 106—114 |
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 312 |
| Fuzhen Zhang — Matrix theory: basic results and techniques | 190 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 10, 209, 232 |
| Xue W. — Rings With Morita Duality | 13 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 525 |
| Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 157, 283, 285 |
| Kelley J., Namioka I. — Linear Topological Spaces | 152 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 224, 226 |
| Anderson J.L. — Principles of Relativity Physics | 34 |
| Lang S. — Linear Algebra | 308 |
| Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 173 |
| Karpilovsky G. — The Jacobson radical of classical rings | 88 |
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 719 |
| Ticciati R. — Quantum field theory for mathematicians | 154—158 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 192, 285 |
| Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 3, 134, 238 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 179, 261 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 295 |
| Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 241 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 75 |
| Szabo M. E. — Algebra of proofs | 23, 92, 93 |
| Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 10 |
| Breuer H.-P., Petruccione F. — The Theory of Open Quantum Systems | 75 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 4, 7, 55 |
| Heinonen J. — Lectures on Analysis on Metric Spaces | 100 |
| Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 19, 111 |
| Robertson A.P., Robertson W. — Topological vector spaces | 130 |
| Frankel T. — The geometry of physics: An introduction | 59, 66
Tensor product, representation |
| Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 267, 321 |
| Davies P. — The New Physics | 377, 379 |
| Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 93, 150 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 295 |
| Brown K. — Cohomology of Groups (Graduate Texts in Mathematics) | 7, 10, 55, 107, 137 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 59 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 313 |
| Zorich V. — Mathematical Analysis | 313 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 178, 190, 261 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 411 |
| Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 148, 152 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 139, 140 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 48, 295 |
| Bhatia R. — Matrix Analysis | 222 |
| Honerkamp J. — Statistical physics: an advanced approach with applications | 331 |
| Chui C.K. — Wavelets: a mathematical tool for signal processing | 134, 168 |
| Bruss D. (ed.), Leuchs G. (ed.) — Lectures on Quantum Information | 318, 343 |
| Proskuryakov I.V. — Problems in Linear Algebra | 301 |
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 121, 185—186 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "product, tensor" |