Авторизация
Поиск по указателям
Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)
Авторы: Fritsch R., Piccinini R.
Аннотация: This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1990
Количество страниц: 336
Добавлена в каталог: 22.11.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-collar 20
(Geometric) standard n-simplex 93
2-category 133
Absolute neighbourhood retract (ANR) 281
Acyclic fibration 178
Acyclic models 286
Adams, J.F. (1930-1989) 88
Addition law (L3) 263
Adjoint (of a simplicial map) 157
Adjoint functor generating principle 303
Adjunction of n-cells 12
Adjunction space 258
Admissible pair (of maps) 292
Affine embedding 91
Affinely independent 89
Alder, M.D. 127
Alexander, J.W. (1888-1971) 131
Alexandroff, P.S. (1896-1983) 131
Allaud, G. 272
Anodyne extension 172
Approximation 68
Associated simplicial set (to an ordered simplicial complex) 152
Attaching (simplicial) 144
Attaching map 12 259
Attaching space 258
Axiom of Choice 31
Axiom of Countable Choice 31
Axiom of multiple choice 31
Ball 1
Barratt, M. 131 222
Barycentre 92
Barycentric coordinates 90
Barycentric refinement of a covering 248
Barycentric subdivision 111
Base (of a euclidean cone) 92
Base (of a Kan fibration) 171
Base space (of a fibration) 255
Based homotopy 286
Based map 286
Borges, C.R. 33 304 305
Borovikov, V. 131
Borsuk, K. (1905-1982) 282 283
Boundary (of standard p-simplex) 142
Bouquet of spheres 18
Bourbaki, N. 252 303
Brouwer theorem 300 302
Brown, R. 54 88 242 251 252 259 266 271 279 298 299
Canonical CW-structure of a ball 24
Canonical simplicial map 200
Cantor set (middle third set) 224 252
Carrier 23 90 98 112
Cartesian product 241
Category of finite ordinals 132
Category of n-ads with type of CW-n-ads 230
Category of presimplicial sets PSiSets 165
Category of simplices functor 141
Category of simplicial sets SiSets 139
Category of small categories 141
Category of spaces with type of CW-complexes TCW 223
Category of topological spaces Top 241
Category of weak Hausdorff k-spaces wHk(Top) 243
Cauty, R. 33
Ceder, J.G. 250
Cell (closed, open, regular) 11
Cell complex 51
Cell path-connected 41
Cell subcomplex 51
Cellular approximation theorem 73
Cellular map 56
Cellular map of (relative) CW-complexes 56
Cellular partial map 62
Chain complex functor 284
Characteristic map 12 259
Classifying set 192
Closed cofibration 251
Closed n-cell 11
Closed regular n-cell 11
Closure finite 40 52
Cogluing theorem 270
Collar 20
Collaring 19
Columbus, G. (1451-1506) 2
Compact-open topology 241
Compactly closed 242
Compatible sequence of maps 273
Complementary face 89
Complete weak homotopy equivalence 231
Composable (pair) 139
Cone 269
Cone (Euclidean) 92
Cone (of a presimplicial set) 167
Cone functor (of presimplicial sets) 167
Connected simplicial set 194
Convenient 242
Convex covering 118
Convexely independent subfamily 95
Coproducts of CW-complexes 57
Coreflective subcategory 152
Cosimplicial map 146
Cosimplicial object (in a category) 138
Cosimplicial set 146
Countable CW-complex 40
Countable family 248
Countable simplicial complex 121
Covering 248
Covering dimension 299
Covering projection 256
Covering space 256
Covering transformation 291
Cross-section 270
cube 96
Curtis, E.B. 220
CW-complex 22
CW-complex of finite dimension 46
CW-complex of finite type 40
CW-n-ad 230
CW-structure 22
Degeneracy operator 135
Degenerate simplex 144
Degree 90
Determined (by a family of subspaces) 246
Diameter (of a geometric simplex) 91
Dimension (of a CW-complex) 46
Dimension (of a Euclidean complex) 100
Dimension (of a minimal pair) 149
Dimension (of a simplex) 139
Dimension (of a simplicial set) 146
Dimension (of an operator) 132
Dimension and embedding 46
Directly equivalent pairs 149
Dold, A. 131 272
Domination 288
Dowker, C.H. (1912-1982) 87 131
Dugundji extension theorem 281
Dugundji, J. (1919-1965) 54 242 248 249 253 302
Dunce hat 152
Dydack, J. 225 239
Dyer, E. 55 267
Eckmann, B. 292
EDGE 89
Eggs of Columbus 2
Eilenberg — MacLane spaces 87 193
Eilenberg — Zilber lemma 145
Eilenberg — Zilber property 149
Eilenberg, S. 55 87 131 197 220 221 267 285 286
ELCX-n-ad 232
ELCX-space 118
ELCX-subspace 119
Elementary degeneracy operator 135
Elementary expansion 65
Elementary face operator 133
Engelking, R. 54 299 300 302
Equi locally convex space (ELCX-space) 118
Equi locally convex structure (ELCX-structure) 118
Equi locally convex subspace (ELCX-subspace) 119
Equiconnecting homotopy 118
Euclidean complex 97
Euclidean realization of a simplicial complex 122
Evaluation map 241
Expanding sequence 273
Exponential law 243
Extension functor 212
Face (of a simplex) 89 110
Face operator 133
Fat realization 166
Fibration 171 254
Fibre 143
Fibre (of a fibration) 255
Fibre homotopic (simplices are-) 181
Fibre homotopy 255
Fibre homotopy (of simplices) 181
Fibre homotopy equivalence 255
Fibre map 255
Figure-eight 287
Filling of horns 171
Filtration (of a space) 22
Final topology 246
Finite CW-complex 40
Finite dimensional CW-complex 46
Finite dimensional simplicial complex 121
Finite euclidean complex 97
Finite ordinals (category) 132
Finite presentation (of groups) 81
Finite simplicial complex 121
Finite type (CW-complexes) 40
Finney, R.L. 127
Folklore, J. 54
Forgetting degeneracies 165
Fox, R.H. (1913-1973) 131
Frechet space 26 27 55
Freudenthal, H. 54
Freyd, P. 221
Fritsch, R. 197 198 221 222
Function n-ad 234
Fundamental group 287
Fundamental group of a CW-complex 78
Fundamental groupoid 298
Gabriel, P. 198 220 221 222 247 284 285 304
Gale, D. 242
Generator (of a simplicial set) 144
Geoghegan, R. 225 239
Geometric realization 112 139
Geometric realization (of a simplicial map) 121 140
Geometric realization functor 121 140 153
Giever, J.B. 221
Global set (of a Euclidean cone) 92
Gluing theorem 266
Groupoid 298
Gugenheim, V. 220
Hanai, S. 27
Hanner, O. 131
Hauptvermutung 112 131
Heath, P.R. 271 304
Hilbert cube 48 302
Hilton, P.J. 170 283 290 291 292
Homology 284
Homology functor 284
Homotopy addition theorem 297
Homotopy equivalence of pairs 278
Homotopy extension property 250
Homotopy groups 287
Homotopy groups of maps 292
Homotopy lifting property 254
Homotopy sequence of a fibration 297
Homotopy sequence of maps 293
Homotopy type 266
Horizontal composition law (L1) 262
Horn 170
Hu, S. 54
Hurewicz fibration 185 255
Hurewicz, W. (1904-1957) 301
Hyman, D.M. 54
Identity operators 133
Increasing the connectivity of maps 83
Induced 142 143
Infinite ball 2
Infinite collar 27
Infinite projective space 25
Infinite simplex 114
Infinite sphere 2
Initial topology 248
Interior (of a simplex) 89
Invariance of domain (theorem) 302
inversion 6
Isomorphic simplicial complexes 111
k-horn 170
k-ification 242
k-simplex 89 110
k-space 242
Kamps, H. 271 287
Kan condition 221
Kan fibration 171
Kan set 172
Kan, D.M. 197 198 220 221 222 303
Kaplan, S. 249
Kelley, J.L. i 245
Kodama, Y. 221
Kolmogorov, A.N. (1903-1989?) 131
Kuratowski — Wojdyslawski embedding theorem 281
Lamotke, K. 197 220 221 222 284
Latch, D.M. 197 221
LEC-spaces 253
Lefschetz, S. (1884-1972) i
Lens space 169 170
Lewis, L.G., jr 266
Lifting property 254
Lifting theorem 291
Lillig, J. 252
Lindeloef space 50
Link 101
Local vertex ordering 111
Locally contractible space 28
Locally equiconnected spaces (LEC) 253
Locally finite CW-complexes 40
Locally finite family 248
Locally finite partition of unity 249
Locally finite simplicial, complex 121
Locally path-connected 29
Locally trivial map 163 271
Locally trivial simplicial map 143
Loop space 256
Lundell, A.T. 51 55 62 131
m-connected map 295
M-equivalence 295
MacLane, S. i 87 287 220 283
Map (simplicial) induced from 143
Map induced from 258
Mapping cone 269
Mapping cylinder 264
Mapping space 241
Mapping track 270
Mardesic, S. 281
Massey, W.S. 88 299
Mather, M.R. 131
May, J.P. 220
McCord, M.C. 244 247
Menger — Noebeling theorem 302
Menger, K. (1902-1985) 302
Metric topology 113
Metzler, W. 131
Реклама