Авторизация
Поиск по указателям
Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)
Авторы: Fritsch R., Piccinini R.
Аннотация: This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1990
Количество страниц: 336
Добавлена в каталог: 22.11.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Michael, E. 54 248 305
Milnor, J. 54 87 88 131 221 239 278 300
Minimal Kan fibration 182
Minimal Kan set 182
Minimal pair 149
Miyazaki, H. 55
Moore space 18
Moore, J.C. 54 222
Morita, K. 27 248
Multiplication law (L5) 263
n-ad (space) 229
n-ad function space 230
n-ad homotopy 230
n-ad homotopy equivalence 230
n-ad map 230
n-ball 10
n-horn with r holes 173
n-manifold 228
n-simplex 139
n-skeleton (of a CW-complex) 23
n-skeleton (of a Euclidean complex) 98
n-sphere 10
Nerve of a covering 110
Noebeling, G. 302
Normal subdivision (of a simplicial set) 148 200
Normal subdivision (of simplices) 198
Normal subdivision functor 199
Northcott, D.G. 283 284
Numerable covering 225 249
Open ball 1
Open n-cell 11
Open simplex 89
Operators 132
Opnormal subdivision (of simplices) 199
Opnormal subdivision functor 200
Order preserving simplicial map 111
Ordered simplicial complexes 111
Paracompact space 249
Paracompactness of CW-complexes 29
Partial map 259
Partial simplicial map 144
Partition of unity 249
Partition of unity subordinated to a covering 249
Peak (of a Euclidean cone) 92
Peak (of a mapping cone) 269
Peano curve 13 55 71
Pears, A.R. 299
Perfectly normal space 261
Piccinini, R.A. 54
Piecewise linear homeomorphism 123
Pinching of the sphere 7
Pinchings 6
Poincare group 287
Poincare, Henri (1854-1912) i 88
Pointwise 141
Polish circle 239
Polyhedron (Euclidean) 97
Presentation of groups 80
Presimplicial map 166
Presimplicial object (in a category) 138
Presimplicial set 165
Preterminal operator 135
Product (of CW-complexes) 58
Product (of simplicial sets) 142
Product theorem 300
Projective plane 152
Projective space (real, complex or quaternionic) 11 25
Proper diagram of nerves 127
Proper face 89 97
Proper face operators 134
Pullback 142 257
Puppe, D. 221 222 271 287
Pushout 256
Quillen, D.G. 221
Realizability theorem 76
Realization 76
Realization functor 303
Reduced cone 269
Reduced cone construction 4
Reduced mapping cone 269
Reduced mapping cylinder 269
Reduced suspension 4 269
Refinement of a covering 248
Regular CW-complex 23
Regular map 56
Regular n-cell 11
Regular simplicial set 208
Relative CW-complex 26
Relative CW-structure 26
Relative homeomorphism 244
Relative normal subdivision 204
Relative simplicial approximation theorem 128
Restriction law (L4) 263
retract 255
Retraction (of an operator) 136
Right coordinates 21
Ringel, C.M. 198
Rourke, C.P. 131 220
Ruiz Salguero, C. 221
Ruiz Salguero, R. 221
Sanderson, B.J. 131 220
Schoen, R. 240
Schubert, H. 87 88 220 227
Section (of an operator) 136
Segal, J. 127 281
Seifert — Van Kampen theorem 299
Seifert, H. 131
Semilocally contractible space 225
Sequential space 27
Serre fibration 185 255
Serre, J.-P. 131 255
Simplex (geometric) 89
Simplex (of a simplicial complex) 110
Simplex (of a simplicial set) 139
Simplicial approximation theorem 125
Simplicial attaching 144
Simplicial complex 110 112
Simplicial contractibility 143
Simplicial decomposition (of a polyhedron) 97
Simplicial deformation retract 143
Simplicial dunce hat 152
Simplicial excision theorem 207
Simplicial homotopy 143
Simplicial homotopy equivalence 143
Simplicial map 111 121 140
Simplicial n-ad 230
Simplicial object (in a category) 138
Simplicial p-sphere 145
Simplicial projective plane 152
Simplicial resolutions of groups 191
Simplicial retraction 90
Simplicial set 139
Simplicial standard-p-simplex 140
Simplicial subset 142
Simplicial universal covering 195
Simplicially contractible presimplicial sets 168
Simplicially homotopic presimplicial maps 166
Simply connected space 287
Singular functor 156 304
Singular homology functor 285
Singular n-simplices 156
Singular set 156
Skeleton (of a CW-complex) 23
Skeleton (of a Euclidean complex) 98
Skeleton (of a simplicial complex) 110
Skeleton (of a simplicial set) 142
Smash product 4 270
Spanier, E. 255 256 259 270 287 288 292 294 297
Sphere 1
Stammbach, U. 283
Standard n-simplex 93 140
Star 36
Star (of a Euclidean complex) 101
Star covering 115
Star functor 219
Star-finite family 248
Starring (of a Euclidean complex at a point) 103
Stasheff, J. 240
Steenrod, N. (1910-1971) 131
Stone, A.H. 27
Stratifiable space 250
Stratification 250
Strom, A. 252 270
Strong topology (of a simplicial complex) 113
Subcomplex (of a CW-complex) 33
Subcomplex (of a Euclidean complex) 98
Subcomplex (of a simplicial complex) 110
Subdivision (of a CW-complex) 66
Subdivision (of a Euclidean complex) 102
Subdivision (of a simplicial complex) 123
Subdivision (of a simplicial set) 220
Sum coordinates 138
Suspension 269
Telescope 278
Tensor product 148 152
Terminal operators 135
tetrahedron 89
Threlfall, W.R. (1888-1949) 131
Tietze's extension theorem 300
tom Dieck, T. 221 271 280 287
Topological domination by a family 248
Topological invariant 42
Topology determined by a family of subspaces 246
Total set (of a Kan fibration) 171
Total space (of a fibration) 255
Totally disconnected 224
Trace of the product topology 113
TREE 79
Triangulable space 128
Triangulation 128
Twisted cartesian product 196
Twisting function 194
Tychonoff plank 245
Tychonoff theorem 34
TYPE 266
Ultrafilter theorem 32
Underlying polyhedron 97
Union space (of an expanding sequence) 273
Union space over a space 259
UNITS 6
Universal covering 291
Universal covering projection 291
Varadarajan, K. 54
Vertex (of a Euclidean complex) 97
Vertex (of a simplicial complex) 110
Vertex operators 134
Vertex scheme 97
Vertex set 110
Vertical composition law (L2) 262
Vertices 89
Wall, C.T.C. 55 88
Wallman, H.(-) 301
Weak Hausdorff spaces 243
Weak homotopy equivalence 161 288
Weak topology 52
Weakly contractible 224
Weakly contractible simplicial set 161
Wedge product 7
Wedge product of spaces 64
Wedge product of spheres 17
Weingram, S. 51 55 62 131
Well-pointed space 252
Whitehead complex 52
Whitehead realizability theorem 76
Whitehead, J.H.C. (1904-1960) 51—55 76 87 239 240 259
Winkler, G. 131
Wojdysfawski, M. 281
Wylie, S. 170 290 291
Yoneda embedding 141
Yoneda Lemma 141
Yoneda, N. 221
Zeeman, C. 127
Zilber, J.A. 197 220 221
Zisman, M. 198 220 221 222 247 284 285 304
Реклама