|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
O'Neill B. — The Geometry of Kerr Black Holes |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-equation 183
4-velocity 35
Acceleration 15
Achronal set 171—172
Action (of a Lie group 6—7
Allowed region, in an r-L plot 214
Analytic function 8
Analytic manifold 8
Angle function A for Kerr coordinates 80 122
Angular momentum of a geodesic around the Kerr axis 179
Angular momentum, per unit mass, of Kerr spacetime 58
Asymptotic flatness 59
Axial symmetry 59
Axis (of Kerr spacetime) 63 68
Axis (of Kerr spacetime), abstract 140 143
Axis (of Kerr spacetime), geometry of 87—88 102
Backward isometry 59 110 152—154 155—160 162—163
Barrier, in an r-L plot 230
Basis Hodge 303
Basis orthonormal 26
Basis positively oriented 303
Basis Theorem 3
Bianchi identity 19 341
Bianchi identity, in Newman — Penrose formalism 341—342
Biskew (0, 4) tensor 298
Bivector 360
Bivector decomposable 362
Bivector principal null 318
Black holes see under “Schwarzschild and Kerr”
Bound orbit see under “Orbit types and Global trajectories”
Boyer — Lindquist (co)frame field 90—91
Boyer — Lindquist (co)frame field, brackets 96
Boyer — Lindquist (co)frame field, connection forms 92
Boyer — Lindquist (co)frame field, covariant derivatives 95
Boyer — Lindquist (co)frame field, curvature forms 98
Boyer — Lindquist (co)frame field, signs for 90 92
Boyer — Lindquist blocks 65—67
Boyer — Lindquist blocks, canonical imbedding of 82
Boyer — Lindquist blocks, causal properties of 75—78
Boyer — Lindquist blocks, incompleteness of block III 101
Boyer — Lindquist blocks, stationary properties of 70—72
Boyer — Lindquist blocks, visualization 63
Boyer — Lindquist coordinates 57
Boyer — Lindquist coordinates, failure at horizons 74
Boyer — Lindquist coordinates, metric identities for 60
Boyer — Lindquist polynomial 282
Boyer, R.H. 121
Bracket operation (Lie bracket) 5
Bracket operation (Lie bracket), for the Boyer — Lindquist vector fields 96
Bracket operation (Lie bracket), in Newman — Penrose formalism 334
Brans, Carl 348
Bundle structure of Kerr spacetime 140—144
Caesar, Julius 56
Canonical frame 323
Canonical imbedding of blocks 82
Canonical Kerr vector fields 60 68
Cartan computations, for the Boyer — Lindquist frame field 90—99
Cartan computations, in general 49—55
Carter band, in an r-L plot 236
Carter constant 183
Carter constant and and approach to the ring singularity 201
Carter constant and , effect on forbidden regions 217
Carter constant and , effect on latitudinal motion 203—207
Carter constant and , general properties of 186—188
Carter constant 188
Carter's (first-integral) theorem 183
Carter's (first-integral) theorem, proof of 357—359
Carter, Brandon 78 183 288
Causal (nonspacelike) vector 29
Causal character of a curve, vector field 33
Causal character of a submanifold 46
Causal character of a subspace 29
Causal character of a vector 27
Causal character of Boyer — Lindquist coordinate vector fields 66 70—72 78
Causal character of the canonical vector fields 66—67 see “Null” “Spacelike”
Causal spacetime 75
Causality 74—75 171
Central sphere 69 145
Chandrasekhar, S. 349
Christoffel symbols 15
Chronological future [past] set 171
Chronological spacetime 75 174
Chronology 171
Chronology of Kerr spacetimes 171—176
Circular coordinate 7—8
Closed submanifold 43
Coframe field 11
Colatitude 43—44
Colatitude , as Boyer-Lindquist coordinate 57—58
Colatitude , as coordinate of a geodesic 201—207
Comparison of Schwarzschild and Kerr spacetimes see “Schwar schild comparison”
Complete vector field 6
Components of tensors 10 11
Configuration of an r-L plot see under “r-L plot”
Conformal flat spacetime 314
Congruence 45 see
Connection forms 50—52
Connection forms for the Boyer — Lindquist frame field see under “Boyer — Lindquist”
Conservation lemma 20
Continents, in an r-L plot 223
Contraction of tensors 11—12 17 299 332—333
Coordinate function 2
Coordinate neighborhood 2
Coordinate one-form 6
Coordinate system 2
Coordinate vector 3 5
Covariant derivative 14—15
Covariant derivative in Newman — Penrose formalism 334
Covariant derivative of Boyer — Lindquist vector fields 94—95
Covector 6
Crossing spheres 119 121 130 135 138 140 146
Curvature form 52
Curvature of Kerr spacetime, Cartan computation 96—100
Curvature of Kerr spacetime, Newman-Penrose expression 3
Curvature singularity 101
Curvature transformation 300
Curvature, abstract 298
Curvature, Gaussian 19 54
Curvature, in Newman-Penrose terms 338—340
Curvature, Kretschmann 18
Curvature, relativistic significance of 35—36
Curvature, Ricci 18
Curvature, Riemannian 17—19
Curvature, scalar 18
Curvature, sectional 18
Curvature, symmetries of 18
Curvature, Weyl conformal 301
Curve 4
Cyclic symmetry 298
Deformation retract 164
Diffeomorphism 3
Differential forms 6 355—356
Differential map 4
Differential of a function 6
Dimension of a manifold 2
Discriminant polynomial 215 217—222
distribution 44—45
Distribution, integrability of 45
Dual basis (or coframe) 11
e-Q chart 219—220
Effective energy, of a geodesic 214
Effective potential, for axial geodesics 254
Effective potential, for polar geodesics 263
Effective potential, in the -equation 201—202
Einstein manifold 308 311
Einstein summation convention (weak) 10
Einstein, Albert 31 33 35
Energy extraction from a black hole 181—182
Energy, of a particle in Kerr spacetime 179
Energy-momentum 4-vector 35
| Equator (equatorial plane) 68 146—147
Equatorial geodesics 272—287
Equatorial geodesics, circular null 277—278
Equatorial geodesics, circular timelike 282—283
Equatorial geodesics, in r<0 273—274
Equatorial geodesics, longitudinal motion of 283—284
Equatorial geodesics, null 276—279
Equatorial geodesics, spacelike 285—286
Equatorial geodesics, timelike 279—283
Equatorial isometry 68
Ergosphere 72—73 181
Escape energy 211
Euclidean space 2
Euler equations 16
Event 32
Event horizon 86—87
expansion see under “Optical scalars”
Extension of Kerr spacetimes 57
Extension of manifolds by coordinates 20—21
Extention of Kerr spacetimes across r=0 62
Extention of Kerr spacetimes over the axis 64
Extention of Kerr spacetimes, plan for 105 see
Extention of manifolds by gluing 21—25
Exterior derivative 356
Exterior of Kerr spacetime 66
Exterior product of forms and of vectors see “wedge product”
Exterior product of vector spaces 299 361—364
Fiber bundle 7
Fiber spheres 144
Fiber spheres in horizons 145—146
First structural equation 50
First-integrals 178—179 183
First-integrals as coefficients of the polynomial R(r) 208
First-integrals effect on orbits 222—235
Flat manifold 36
Flow 6
Flyby orbit see under “Orbit types and Global trajectories”
Foliation 45
Forbidden region, in an r-L plot 214
Frame field 10—11
Frame field, Boyer — Lindquist see under “Boyer-Lindquist”
Frame field, orthonormal 17
Frobenius' Theorem 44 356
Fundamental groups of Kerr spacetimes 165 167 170
Future set see “Chronological future set”
Future [past] complete geodesic 111
Future [past] side 172
Future-pointing 33
Futurecone 33
g-null 318
General relativity, introduction to 31—42
Geodesic completeness 15
Geodesic completeness modulo the ring singularity 189
Geodesics 15—16 48 334
Geodesics complete 111
Geodesics in Kerr spacetime, axial 250—255
Geodesics in Kerr spacetime, equations for: Colatitude equation (-equation) 183
Geodesics in Kerr spacetime, equations for: Coordinate integral equations 190 191
Geodesics in Kerr spacetime, equations for: First-order equations for longitude and time 181 190
Geodesics in Kerr spacetime, equations for: Radial equation (r-equation) 183
Geodesics in Kerr spacetime, extensions of, across horizons 196—200
Geodesics in Kerr spacetime, extensions of, through a Boyer-Lindquist block 195
Geodesics in Kerr spacetime, hitting the ring, singularity 101
Geodesics in Kerr spacetime, hitting the ring, via the equator 288
Geodesics in Kerr spacetime, in horizons 255—262
Geodesics in Kerr spacetime, initial data for 185
Geodesics in Kerr spacetime, polar 262—272
Geodesics in Kerr spacetime, regular 189
Geodesics in Kerr spacetime, with Q=0 287—291 293 see “First-integrals” “Global “Principal
Geometric units 351—353
Global trajectories, of Kerr geodesics 243—250
Global trajectories, of Kerr geodesics, for standard particles 244
Global trajectories, of Kerr geodesics, timelike bound orbits: in block I 247
Global trajectories, of Kerr geodesics, timelike bound orbits: in block III 247
Global trajectories, of Kerr geodesics, timelike bound orbits: large 248—249
Global trajectories, of Kerr geodesics, timelike flyby orbits: exterior 245
Global trajectories, of Kerr geodesics, timelike flyby orbits: in block III 245
Global trajectories, of Kerr geodesics, timelike flyby orbits: long 245—247
Global trajectories, of Kerr geodesics, timelike transit orbit 249—250
Gluing data 21
Gluing of manifolds 21—25
Goldberg — Sachs theorem 345—348
Hausdorff condition (for gluing) 23—24
Hitting the ring singularity see under “Geodesics in Kerr spacetime”
Hodge basis 303
Hodge double indices 304 310
Hodge identity 304
Hodge star operator 303—308
Hodge star operator, as complex structure 305
Hodge star operator, in complex scalar product 306
Homotopy equivalence 164
Homotopy type 164
Homotopy type of extreme Kerr spacetime 168
Homotopy type of fast Kerr spacetime 164—165
Homotopy type of slow Kerr spacetime 166—168
Homotopy type of small Kerr spacetimes 168—170
Horizon function 58 62
Horizon sphere 145
Horizon, in Kerr spacetime 58 62—63
Horizon, in Kerr spacetime, as one-way membrane 84 172
Horizon, in Kerr spacetime, crossing, by geodesics 196—200
Horizon, in Kerr spacetime, geometry of 83—85
Horizon, in Kerr spacetime, long see “Long horizon”
Hypersurface 42—43 45—46 48
Hypersurface, achronal 171
Hypersurface, one-and two-sided 46
Hypersurface, separating 46
Hypersurface-orthogonal vector field 48 71 356
Index of a scalar product 26
Inextendibility of Kerr spacetimes 293—295
Inner product 12
Instantaneous observer 38
Integral curve 5
Integral manifold 44—45
Isometries of Boyer — Lindquist blocks 149—154
Isometries of extreme Kerr spacetime 155—158
Isometries of Kruskal domains 158—160
Isometries of slow Kerr spacetime 161—163
Isometry 13—14 48
Jacobi identity 5
KBL coordinates 121—130
KBL coordinates, related to Boyer — Lindquist coordinates 131—132 137
Kerr black hole see also “Kerr spacetime”
Kerr black hole, overview 55—56
Kerr black hole, physical properties summarized 102—103
Kerr exterior (block I) 66
Kerr metric on 131 134—135
Kerr metric tensor (or line-element), compared with Minkowski and Schwarzschild metrics 58
Kerr metric tensor (or line-element), in Boyer — Lindquist coordinates 58—59
Kerr metric tensor (or line-element), in Boyer — Lindquist coordinates, alternative formulation of 91
Kerr metric tensor (or line-element), in KBL coordinates 134—135
Kerr metric tensor (or line-element), in Kerr-star coordinates 81
Kerr metric tensor (or line-element), in star-Kerr coordinates 107
Kerr metric tensor (or line-element), on Kruskal domains 131—135
Kerr metric tensor (or line-element), on the axis 64—65
Kerr metric tensor (or line-element), Petrov type D character of 315—317
Kerr observers 71—74
Kerr patch 114 138
Kerr spacetime, maximal analytic extensions of see “Maximal Kerr spacetimes”
Kerr spacetime, slow, extreme, fast see “Rotation types”
Kerr spacetime, working definition of 67—68
Kerr, Roy 31
Kerr-Newman metric 61
Kerr-star spacetime 79—83
Kerr-star spacetime, definition 82
Killing isometry (group) 149—150
Killing orbit 69
Killing vector field 19—20 48
Killing vector field on Kerr spacetime 59 68 69 70—71 155
Kinnersley, William 344
|
|
|
Ðåêëàìà |
|
|
|