Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ueno K. — Algebraic Geometry 2: Sheaves and Cohomology
Ueno K. — Algebraic Geometry 2: Sheaves and Cohomology



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Geometry 2: Sheaves and Cohomology

Автор: Ueno K.

Аннотация:

This is a good book on important ideas. But it competes with Hartshorne ALGEBRAIC GEOMETRY and that is a tough challenge. It has roughly the same prerequisites as Hartshorne and covers much the same ideas. The three volumes together are actually a bit longer than Hartshorne. I had hoped this would be a lighter, more easily surveyable book than Hartshorne's. The subject involves a huge amount of material, an overall survey showing how the parts fit together could be very helpful, and the IWANAMI SERIES has some terrific, brief, easy to read, overviews of such subjects — which give proof techniques but refer elsewhere for the details of some longer proofs. But it turns out that Ueno differs from Hartshorne in the other direction: He gives more explicit nuts and bolts of the basic constructions. Overall it is easier to get an overview from Hartshorne. Ueno does also give a lot of "insider information" on how to look at things. It is a good book.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: This is a good book on important ideas. But it competes with Hartshorne ALGEBRAIC GEOMETRY and that

Год издания: 2001

Количество страниц: 99

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\mathcal{O}_X$-flat sheaf      23
$\mathcal{O}_X$-module      17
$\mathcal{O}_X$-module homomorphism      17
$\mathcal{O}_Y$-algebra      47
$\mathcal{O}_Y$-commutative algebra      47
Affine morphism      46
Alternating cochain      133
Ample invertible sheaf      103
Artin — Rees lemma      133
Blowing up      88 110
Canonical flabby resolution      115
Cech cohomology group      133 134
Chern class      148
Closed immersion      45
Closed morphism      54
Closed subscheme      45
Cocycle      7
Coherent      30
Coherent sheaf      30
Cohomology      7 111 118
Cohomology group      118
Cokernel      9
Complete variety      106
COMPLEX      118
Cousin distribution      15
Cousin problem      15
Direct sum      18
Discrete valuation      61
Discrete valuation ring      61
Dominate      60
Double complex      122
Dual sheaf      52
Duality principle      109
Euler characteristics      147
Euler — Poincare characteristics      147
Exact      11
Exact sequence      11
f-ample      103
f-very ample      99
Finitely generated      24 101 103
Finitely presented      75 89
Finitely presented _R-module      23
Flabby resolution      113
Flabby sheaf      111
Free $\mathcal{O}_X$-module      18
Free module      18
Graded S-module      72
Higher direct image      154
Homogeneous coordinate ring      109
Homomorphism of degree 0      70
Homomorphism of sheaves      2
Hypersurface      85
Ideal sheaf      44
Image      7
Immersion      99
Injective      11
Injective R-module      129
Injective resolution      129
Integrally closed      109
Inverse image      37 40
Invertible sheaf      18
Irrelevant ideal      68
Isomorphism      3
Kernel      6
Leray's theorem      136
Line bundle      19
Line over k      108
Locally free $\mathcal{O}_X$-module      18
Locally free $\mathcal{O}_X$-module of rank n      18
Locally free resolution      146
Locally free sheaf      18
Long Exact Sequence      125
Monoidal transformation      110
Nakayama's lemma      59
Nilpotent ideal sheaf      50
Normal ring      109
Normal scheme      109
Pairing      138
Pappus theorem      109
Perfect pairing      138
Picard group      23
Prime element      61
Projective      104
Projective morphism      103
Projective scheme      87
Projective transformation      108
Projective variety      106
Projectively normal      109
Proper mapping theorem      157
Proper morphism      56
Quasicoherent      24
Quasicoherent ideal sheaf      44
Quasicoherent sheaf      24
Quasicompact morphism      42
Quasiprojective      103
Quasiprojective morphism      103
Quotient field      15
Quotient sheaf      11
R-flat module      23
Rank      18
Reduced      50
refinement      134
Riemann — Roch theorem      148
Ring of total quotients      15
S-homomorphism of degree n      74
Section      19
Segre morphism      98
SEQUENCE      11
Sheaf field of fractions      15
Sheaf obtained by extending by zero      46
Sheaf of local sections      19
Sheafification      5
Short exact sequence      12
Skyscraper sheaf      11
Specialization      62
Structure sheaf      68
Subsheaf      6
Support      44
Surjective      11
Symmetric algebra      51
Symmetric algebra over E      51
Tensor algebra      51
Tensor algebra over E      51
Tensor product      21
Totally ordered module      59
Universally closed      54
Universally closed morphism      54
Valuation      60
Valuation ring      60
Valuative criterion      59
Valuative criterion of properness      63
Valuative criterion of separatedness      66
Vector bundle      18 19
Vector fiber space      52
Weight      70
Weighted projective space      70
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте