Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Weisfeiler B. — On Construction And Identification Of Graphs
Weisfeiler B. — On Construction And Identification Of Graphs



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: On Construction And Identification Of Graphs

Автор: Weisfeiler B.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1976

Количество страниц: 237

Добавлена в каталог: 18.11.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Algorithm of canonization      R 2.1 R R S
Algorithm of exhaustive search      Q3
Algorithm, canonical      R 2.1
Algorithm, correct      O 2.1
Algorithm, elevation      R 4.2 R
Algorithm, invariant      O 2.1
Algorithm, semi-invariant      R 2.2
Algorithm, splitting      R 4.1 R
annex      J 4.3
Assemblage of correct graphs      R 6.2
Assemblage of direct sums      R 6.1
Automorphism      C 2.1 E
Basic element      C 11.2 D
Basic graph      C 11.2 D
Block-design      L 18
Block-diagonal form      H 1.1 H
Block-triangular form      H 1.1 H
Break-down      T 3
Canonical algorithm      R 2.1
Canonical embedding      C 2.4
Canonization algorithm      R 2.1 R R S
cell      D 1.2
Cell, imprimitive      H 1.1
Cell, primitive      H 1.1
Cell, three-dimensional      L 20
Cellular algebra      D 1.1
Cellular algebra, central decomposition of      E 2 F
Cellular algebra, considered as algebra      L
Cellular algebra, correct      J 6.1
Cellular algebra, decomposition of      E 2 F
Cellular algebra, degree of      D 1.1 E
Cellular algebra, dimension of      D 1.1 E
Cellular algebra, fully correct      J 6.1
Cellular algebra, generic point of (matrix of)      D 1.1
Cellular algebra, homomorphism of      E 5.1 J
Cellular algebra, isomorphism of      E 5.1 E
Cellular algebra, matrix of      D 1.1
Cellular algebra, rank of      E 3
Cellular algebra, split      Con. 3 C E
Cellular algebra, standard basis of      D 1.1
Central decomposition      E 2 F
Centralizer ring      F 1
Complement of a strongly regular graph      V 2
Composition of disjoint      Con. 2
Composition of equal      Con. 2
Composition of matrices or graphs      Con. 2
Connection block      E 3
Connection block of normal subcells      J 4.1
Constant block      C 3 J
Correct cellular algebras      J 6.1
Correct cellular algebras, assemblage of      R 6.2
Correct cellular algebras, disassemblage of      J 6.7 R
Correct cellular algebras, fully      J 6.1
Cutoff = reduction of exhaustive search      Q 2.7 Q Q
Daughter system      O 3.1
Daughter system, invariantly defined      O 3.1
Decomposition      E 2 F
Decomposition, central      E 2 F
Deep constants      AD
Deep stabilization      O
Degree of cellular algebra      C 1 D E
Degree of graph      Con. 3 C E
Degree of normal subcell      G 1.1
Deletion      T 5
Deletion of a row      O 3.2
Depth 1      O 4.13
Depth > 1      O 6 AD
Depth of exhaustive search      Q 2.4 Q
Depth of stabilization      Q 4.13 O
Descendant      V 3
Descent      V 3
Dimension of cellular algebra      C 1 E
Dimension of graph      C 1 E
Dimension of matrix      Con. 3
Direct sum      G 2
Direct sum, assemblage of      R 6.1
Direct sum, disassemblage of      R 5.4.1
Disassemblage of correct algebras      J 6.7 R
Disassemblage of direct sums      R 5.4.1
Disjoint composition      Con. 2
Edge graph      O 6.4 P
Elevation algorithm      R 4.2 R
Equivalency      C 2 b
Equivalency, natural      E 5.1
Equivalency, weak      E 5.1
Exhaustion = exhaustive search      Q
Exhaustive search = exhaustion      Q
Exhaustive search = exhaustion, cutoff of      Q 2.7 Q Q
Exhaustive search = exhaustion, depth of      Q 2.4
Exhaustive search = exhaustion, forced variant in      Q 2.9
Exhaustive search = exhaustion, graph of      Q 2.3 Q
Exhaustive search = exhaustion, level of      Q 2.4
Exhaustive search = exhaustion, tree of      2.3 Q
Exhaustive search = exhaustion, variant rejection in      Q 2.7 Q Q
Extension      S 2.2
Extension of graph      C 4.3
Factor      H 7 I
Factor cell      H 7
Factor graph      I 4
Families of strongly regular graphs      V
fixation      T 2.4 T
Forced variant      Q 2.10
Frame’s theorem      K 9 K
Fully correct      J 6.1
Generic point of cellular algebra      D 1.1
Generic point of normal subcell      H 1.1
Graph      Con. 2 C
Graph of exhaustive search      Q 2.3 Q
Graph, central decomposition of      E 2 P
Graph, correct      J 6.1
Graph, decomposition of      E 2 P
Graph, degree of      Con. 3 C E
Graph, dimension of      Con. 3 C E
Graph, equivalency of      C 2.3
Graph, factor of      I 4
Graph, fully correct      J 6.1
Graph, homomorphism of      E 5.1 J
Graph, imbedding of      C 2.2
Graph, isomorphism of      C 2.1 E
Graph, natural equivalency of      E 5.1
Graph, product of      C 4.2 M
Graph, split      C 3.6 E
Graph, stabilization of      C 8 M
Graph, stable with respect to kernel      N 4.1
Graph, stationary      C 4.4
Graph, stationary of depth 1      O 4.13
Graph, strongly regular      L 20 T U V
Graph, superimposition of      C 4.1
Graph, weak isomorphism of      E 5.1
Group algebra = group ring      G 1
Group ring      G 1
Heuristic      Q 2.10
Homomorphism      E 5.1 J
Idempotents      E 1
Imbedding      C 2.2
Imbedding, canonical      C 2.4
Imprimitive      H 1.1
Imprimitive cell      H 1.1
Imprimitive group      H
Imprimitivity      H 1.1
Imprimitivity, set of      H 1.1
Imprimitivity, system of      H 1.1
Invariant, algebraic      AE
Invariant, algorithms      O 2.1
Invariant, numerical      E 6
Invariant, polynomials      AE
Isomorphism      E 5.1 E
Isomorphism, weak      E 5.1
Kernel      N 2
Kernel, decomposes      N 4.1
Kernel, splits      N 4.1
Kernel, stability with respect to      N 4.1
Kernel, stabilization with respect to      N 3.4
Level of exhaustive search      Q 2.4
Manning’s theorem      P 4
Matrix of a cellular algebra      D 1.1
Matrix, composition of      Con. 2
Matrix, disjoint from      Con 2
Matrix, equal composition with      Con. 2
Maximal form of matrix (graph)      S 1
Monotonic form of matrix (graph)      S 2
Normal subcell      H 1.1
Normal subcell, degree of      H 1.1
Normal subcell, generic point of      H 1.1
Normal subcell, matrix of      H 1.1
Normal subcell, standard basis of      H 1.1
Partially ordered set      M 2.1
primitive      H 1.1
Primitive cell      H 1.1 K
Primitive group      H
PRODUCT      C 4 b
Quotient      H 7 I
Rank of cellular algebra      E 3
Rank of stationary graph      E 3
Reduction of exhaustive search      Q 2.7 Q Q
Regular action of a group      AA AB
Representation, natural of cellular algebra      L
Seidel equivalence      V 6
Semi-invariant algorithm      R 2.2
Set of D-equivalence      T 1
Set of imprimitivity      H 1.1
Similar blocks      H 4 I
Similar rows      I 1.1
Simple graph      Con. 2
simplex      Con. 3 C E
Simultaneous stabilization      N 4.3
Split graph, matrix, cellular algebra      Con. 3 C E
Splitting algorithm      R 4.1 R
Stabilization      C 8 M
Stabilization of depth 1      O 4.1 O O O
Stabilization of depth > 1      O 6
Stabilization with respect to kernel      N 3.4
Stabilization, simultaneous      M 4.3
Stable with respect to kernel      N 4.1
Standard basis of cellular algebra      D 1.1
Standard basis of normal subcell      H 1.1
Standard basis of underlying space      D 1.1
Stationary graph      C 4.4 M
Stationary graph of depth 1      O 4.13
Stationary graph of depth > 1      O 6
Steiner triples      V 1
Strongly regular graph      L 20 T U V
Structure constants      D 4 E
Subcell      D 1.3
Subcell, normal      H 1.1
Superimposition      C 4.1
Surgery      V 4.2.3
Tensor product      G 3
Theorem of Frame      L 9 L
Theorem of Kuhn      J 5
Theorem of Manning      P 4
Theorem of Wielandt      P 5
Tree of exhaustive search      Q 2.3 Q
Variant rejection      Q 2.7 Q Q
Weak equivalency      E 5.1
Weak isomorphism      E 5.1
Wielandt’s theorem      P 5
Wreath product      G 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте