| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kharazishvili A.B. — Strange functions in real analysis | |
| Apostol T.M. — Calculus (vol 1) | 472, 561 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 4 |
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 36, 54 |
| Rudin W. — Principles of Mathematical Analysis | 16, 30 |
| Eisenhart L.P. — Riemannian geometry | 34 |
| Apostol T.M. — Calculus (vol 2) | 15 |
| Artin E. — Geometric Algebra | 178 ff. |
| Shorack G.R. — Probability for statisticians | 23 |
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 3 |
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 3 |
| Dodge C.W. — Sets, logic & numbers | 226, 249 |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 203 |
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 10, 16, 26 |
| Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 11, 92, 94, 141, 182 |
| Meirovitch L. — Methods of analytical dynamics | 2, 172, 175, 211, 501 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 7, 29, 33, 37, 106, 164, 277, 393 |
| Alon N., Spenser J. — The probabilistic method | 68, 216, 218, 222, 243 |
| Molchanov I.I. — Limit theorems for unions of random closed sets | 1 |
| Hoffman K., Kunze R. — Linear algebra | 277 |
| Messer R. — Linear Algebra: Gateway to Mathematics | 21, 25 |
| Rudin W. — Real and Complex Analysis | 34, 49 |
| Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 320 |
| Lee J.M. — Introduction to Smooth Manifolds | 11, 406 |
| Webster R. — Convexity | 1, 2 |
| Jennings G.A. — Modern Geometry with Applications | 1 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 7, 9, 45, 148, 244, 271, 387 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 517 |
| Lee J.M. — Introduction to Topological Manifolds | 2, 347 |
| Papapetrou A. — Lectures on general relativity | 31 |
| Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics | 172 |
| Artin M. — Algebra | 247 |
| Bryant R., Griffiths P., Grossman D. — Exterior differential systems and Euler-Lagrange PDEs | vii, 21—35 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 3 |
| Dodge C.W. — Foundations of algebra and analysis | 226, 249 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 92 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 374, 375, 563 |
| Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 588 |
| Ryder L.H. — Quantum Field Theory | 185 |
| Bogachev V.I. — Measure Theory Vol.1 | 254 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 3, 64, 65, 149, 151, 461 |
| Engel K. — Sperner theory | 209 |
| Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 15 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 192 |
| Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 184 |
| Kohonen T. — Self-organizing maps | 4 |
| Falconer K.J. — Techniques in Fractal Geometry | 1 |
| Krantz S.G. — Function Theory of Several Complex Variables | 1 |
| Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 42, 47, 53 |
| Petersen P. — Riemannian Geometry | 2 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 4—6 |
| Kapusta J.I. — Finite-temperature field theory | 41, 77, 79, 109—110, 127, 135, 138—139 |
| O'Donnel P. — Introduction to 2-Spinors in General Relativity | 6, 128, 130 |
| Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 26, 27, 47, 53, 58, 64, 87, 88,118, 126—128, 133, 134, 149,172, 196, 198, 199, 205, 218 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 15 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 192, 193 |
| Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 3, 11 |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 93 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 2 |
| Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 126, 132 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 2 |
| Khuri A.I. — Advanced calculus with applications in statistics | 21 |
| Chern S.-S., Shen Z. — Riemann-Finsler Geometry | 4 |
| Graham R.L., Rothschild B.L., Spencer J.H. — Ramsey Theory | 40—41, 133 |
| Brown K.S. — Buildings | 150 |
| Sinha S.M. — Mathematical Programming: Theory and Methods | 34 |
| Milewski E.G. — Topology Problem Solver | 10—3 |
| Brigman P.W. — The Logic of Modern Physics | 14, 15, 16, 18, 23, 52, 61, 67 |
| Antman S.S. — Nonlinear Problems of Elasticity | 4 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 53 |
| McDuff D., Salamon D. — Introduction to Symplectic Topology | 2 |
| Menzel D.H. — Mathematical Physics | 403 |
| Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 268 |
| Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 759 |
| Morita S. — Geometry of differential forms | 147 |
| Rudin W. — Real and complex analysis | 34, 49 |
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 72 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 321, 371n |
| Robinson D.J.S. — A Course in Linear Algebra with Applications | 102, 235 |
| Morita Sh. — Geometry of Differential Forms | 147 |
| Duffie D. — Security Markets. Stochastic Models | 29 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 163, 267, 314, 415 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 472, 561 |
| Ramond P. — Field Theory: A modern Primer | 65 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 121 |
| O'Neill B. — Elementary differential geometry | 3, 5 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 2 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 264 |
| Phillips G.M. — Interpolation and Approximation by Polynomials | 163 |
| Weir A.J. — Lebesgue Integration and Measure | 70—92, 124 et aqq., 219 et aqq. |
| Bogachev V.I. — Measure Theory Vol.2 | I: 254 |
| Strichartz R.S. — The way of analysis | 355, 368 |
| Schechter M. — Spectra of partial differential operators | 39 |
| Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 15 |
| Köthe G. — Topological vector spaces I | 23 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 1, 3, 55, 228 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 9 |
| Munkres J.R. — Analysis on manifolds | 25 |
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 570 |
| Faugeras O., Luong Q., Papadopoulo T. — The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications | see “Affine space Euclidean” |
| Rourke C.P., Sanderson B.J. — Introduction to Piecewise-Linear Topology | 1 |
| Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 5, 8, 10, 304 |
| Englert B.G. (Ed) — Quantum Mechanics | 38 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 2.7.5.8, 3.7.8, 7.0.1, 9.1.1 |
| Hu S.-T. — Elements of real analysis | 127, 164, 207 |
| Munkres J. — Topology | 38 |
| Grünbaum B. — Convex Polytopes | 7a |
| Betten J. — Creep Mechanics | 16, 49 |
| Billingsley P. — Probability and Measure | A1, A16 |
| Hu S.-T. — Elements of general topology | 37 |
| Miller W. — Symmetry Groups and Their Applications | 16 |
| Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 14, 166 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 140 |
| Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 9 |
| Eisenhart L.P. — Continuous groups of transformations | 186, 188, 190, 191 |
| Kullback S. — Information theory and statistics | 3, 383 |
| Ardema M.D. — Analytical Dynamics: Theory and Applications | 1 |
| Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1) | 330 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 1 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 78, 101, 131, 219 |
| O'Neill B. — The Geometry of Kerr Black Holes | 2 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 271 |
| D'Inverno R. — Introducing Einstein's Relatvity | 27, 56, 57, 66, 67, 102, 107, 135, 189, 190, 208, 308, 319, 320, 321, 326, 329, 352 |
| Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 4, 25, 75, 00, 112 |
| Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 14 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 250 |
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 88, 96, 106, 109 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 14 |
| Tolman R.C. — Relativity, thermodynamics, and cosmology | 31 |
| van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37 | 279, 280 |
| Siegel W. — Fields | IA4, IIIC4, VB4 |
| Rosenfeld B. — Geometry of Lie Groups | 8, 168—169 |
| Graybill F.A. — Matrices with Applications in Statistics | 54 |
| Bow S.-T. — Pattern recognition and image preprocessing | 20, 62 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 4—6 |
| Zhang Y. — Visual Information Representation, Communication and Image Processing | 11 |
| Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 60 |
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 2, 108, 132 |
| Farin G. — Curves and surfaces for computer aided geometric design | 12 |
| M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | v, 21, 22, 134, 135, 141, 173, 205, 221, 259 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 33 |
| Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 103 |
| Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 6 |
| Rektorys K. — Survey of applicable mathematics | 996 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 127 |
| Lefschetz S. — Differential Equations: Geometric Theory | 3 |
| Williamson J.H. — Lebesgue Integration | 7 |
| Balakrishnan N., Rao C.R. — Handbook of Statistics (Vol. 17): Order Statistics: Applications | 15 |
| Adomian G. — Stochastic Systems | 80 |
| Naimark M.A., Stern A.I. — Theory of Group Representations | 46 |
| Morita S. — Geometry of Differential Forms | 147 |
| Goffman C. — Calculus of several variables | 5 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 37, 113, 196, 205 |
| Cairns S.S. — Introductory topology | 48, 50 |
| Rogosinski W.W. — Volume and integral | 1.1 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 2 |
| Valentine F.A. — Convex Sets | 7, 57, 208 |
| Hermann R. — Differential geometry and the calculus of variations | 3, 22, 24, 98, 164, 276 |
| Hu S.T. — Introduction to general topology | 37, 113, 196, 205 |
| Hu S.-T. — Introduction to contemporary mathematics | 25, 125, 167 |
| Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 209 |
| Adler R.J. — Geometry of random fields | 5 |
| Bazaraa M.S., Jarvis J.J. — Linear Programming and Network Flows | 42 |
| Antsaklis P.S., Michel A.N. — Linear Systems | 437, 441 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 299 |
| Bondi H. — Cosmology | 19, 41, 42, 93, 102, 112 |
| Finkbeiner D.T. — Introduction to Matrices and Linear Transformations | 170, 173, 175—179 |
| Spanier E.H. — Algebraic Topology | 9 |
| DeGroot M.H. — Optimal statistical decisions | 8 |
| Prasolov V.V., Tikhomirov V.M. — Geometry | 18 |
| Munkres J.R. — Topology: A First Course | 37 |
| Borovik A.V. — Mathematics under the microscope | 31, 47 |
| Wilson W. — Theoretical physics - Relativity and quantum dynamics | 5, 7 |
| Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 24—26, 29, 124 |
| Greub W.H. — Linear Algebra | 181, 282 |
| Verdina J. — Projective Geometry and Point Tranformations | 162 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 39 |
| Siegel W. — Fields | IA4, IIIC4, VB4 |
| Krantz S.G. — Function theory of several complex variables | 1 |
| Stakgold I. — Green's functions and boundary value problems | 264 |
| Lounesto P. — Clifford algebras and spinors | 93 |
| Hadley G. — Linear programming | 40 |
| Weinreich G. — Geometrical vectors | 1—2 |
| Rektorys K. (ed.) — Survey of Applicable Mathematics | 996 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 271 |
| Hsiung C.-C. — A first course in differential geometry | 1 |
| Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 537 |
| Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science | 185 |
| Schutz B.F. — A first course in general relativity | 74, 125 |
| Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 26, 180 |
| Anderson J.L. — Principles of Relativity Physics | 151 |
| Laurens Jansen — Theory of Finite Groups. Applications in Physics | 61, 85—86 |
| Dieudonne J. — Linear Algebra and Geometry. | 50 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 15 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 87, 252 |
| Schott J.R. — Matrix Analysis for Statistics | 36 |
| Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 3 |
| Lee A. — Mathematics Applied to Continuum Mechanics | 4 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 1 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 2 |
| De Barra G — Measure theory and integration | 16 |
| Akenine-Möller T. — Real-Time Rendering | 715—718 |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 37, 55, 118, 121, 125, 128 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 15, 65, 79, 121, 161, 176, 182, 197, 198, 214, 218 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 1 |
| Marcus M., Minc H. — Introduction to Linear Algebra | 31 |
| Falconer K. — Fractal geometry: mathematical foundations and applications | 3 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 299 |
| Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 387 |
| Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 18, 36, 92, 99, 123, 240 |
| Rosenberg S. — The Laplacian on a Riemannian manifold | 11 |
| Klein E. — Mathematical methods in theoretical economics | 177 |
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 147 |
| Chvatal V. — Linear programming | see "n-dimensional space" |
| Proskuryakov I.V. — Problems in Linear Algebra | 205 |