Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Lie group



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Guillemin V., Pollack A. — Differential topology23
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary143
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1)357, 539
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic677
Berger M. — A Panoramic View of Riemannian Geometry170
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory39, 490
Olver P.J. — Equivalence, Invariants and Symmetry32, 48, 53, 54, 254, 268, 435, 441
Oprea J. — Differential Geometry and Its Applications344
Eisenbud D., Harris J. — The Geometry of Schemes161
Husemoeller D. — Elliptic curves19
Baker A. — Matrix Groups: An Introduction to Lie Group Theory187
Goldberg S.I. — Curvature and homology103
Silverman J.H. — The arithmetic of elliptic curves158, 161, 162
Hicks N. — Notes on differential geometry5
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint249
Millman R.S., Parker G.D. — Elements of Differential Geometry209, 223 (5.5)
Michor P.W. — Gauge Theory for Fiber Bundles5
Fulton W., Harris J. — Representation Theory: A First Course93
Mimura M., Toda H. — Topology of Lie Groups, I and II39, 80, 279, 280
Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry239
Ward R.S., Wells R.O. — Twistor geometry and field theory36, 37, 39, 41, 47, 63, 66, 67, 84, 89, 90, 139, 189, 206, 208, 211, 213, 258—260, 264
Goldstein H., Poole C., Safko J. — Classical mechanics411, 412, 611—613
Lee J.M. — Introduction to Topological Manifolds10
Debnath L. — Nonlinear water waves172, 194
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis369
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers310, 356—357
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations27, 28, 33, 331ff, 336, 337, 363, 367, 375, 385, 387, 405, 416, 417, 424, 426, 427
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry533
Ryder L.H. — Quantum Field Theory31
Knapp A.W. — Elliptic Curves (MN-40)376
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry121, 138, 420
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra33
Thomas Ch.B. — Representations of Finite and Lie Groups75
Michor P.W. — Topics in Differential Geometry36
Torretti R. — Relativity and Geometry268, 269
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists730
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra125, 140, 142, 143—150, 192, 210, 240, see also general linear, orthogonal, unitary, special linear, spinor and symplectic groups
Reid M., Szendroi B. — Geometry and Topologysee compact Lie group, 142—164, 169
Hatcher A. — Algebraic Topology282
Atiyah M. — Representation Theory of Lie Groups65, 93, 94
Sabinin L.V. — Smooth Quasigroups and Loops48
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1187
Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations41
Gallot S., Hulin D. — Riemannian Geometry1.70 ff., 1.129 ff., 2.34, 2.47, 2.108, 3.17, 3.81, 3.84, 3.84, 3.86, 3.105.
Masujima M. — Path integral quantization and stochastic quantization104, 107, 108
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications486
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry30
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems316
Petersen P. — Riemannian Geometry6
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry81—89
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding20, 309
Suykens J.A.K., Horvath G., Basu S. — Advances in learning theory: methods, models and applications301
Steenrod N.E. — The Topology of Fibre Bundles32
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics1, 7, 32
Ziman J.M. — Elements of Advanced Quantum Theory239—257
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2I-38
Brickell F., Clark R.S. — Differentiable Manifolds210
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry559
Georgi H. — Lie algebras in particle physics8
Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces98
Morita S. — Geometry of differential forms22
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry122
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities194
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists95
Morita Sh. — Geometry of Differential Forms22
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineeringviii, ix, 195, 240, 241, 307, 309, 367, 376, 383, 391
Bleecker D. — Gauge Theory and Variational Principles18
Simon B. — Representations of Finite and Compact Groups128
De Felice F., Clarke C.J.S. — Relativity on curved manifolds151
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners527
Tapp K. — Matrix Groups for Undergraduates159
Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture314
Grosswald E. — Bessel Polynomials41, 46, 47
Serre J.-P. — Lectures on the Mordell-Weil Theorem60, 149
Greiner W., Muller B. — Gauge theory of weak interactions307
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups1 ff
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions80, 290
do Carmo M.P. — Riemannian geometry39
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2)2.12, 3.8
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory8, 49, 67
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds232
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)371
Munkres J.R. — Analysis on manifolds209
Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory7, 85
Kirillov A.A. — Elements of the Theory of Representations83
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology131
Berger M., Cole M. (translator) — Geometry I (Universitext)1.8.7.3, 2.7.5.12, 8.10.1, 12.6.8
Fenn R. — Geometry42, 294
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory140, 213—233 (see also “SU(2)”)
Audin M. — Torus Actions on Symplectic Manifolds9, 32
Eisenhart L.P. — Continuous groups of transformations40
Mehta M.L. — Random Matrices648, 653
Kumar P., D'Ariano G.M., Hirota O. — Quantum communication, computing, and measurement 2144
Clemens C.H. — Scrapbook of Complex Curve Theory131
Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics35 (see also SU entries)
Greiner W., Mueller B. — Quantum mechanics: symmetries37 ff.
Bertlmann R.A. — Anomalies in Quantum Field Theory88—95
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications63, 77, 84, 87—229
Miller W. — Lie theory and special functions1
Price J.F. — Lie groups and compact groups25
Oprea J. — Differential Geometry and Its Applications424
Basdevant J.-L., Dalibard J. — Quantum Mechanics190, 218, 246
Auletta G. — Foundations and Interpretation of Quantum Mechanics62
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry81—89
Curtis M.L. — Abstract Linear Algebra132
Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics118
Nash C. — Differential Topology and Quantum Field Theory9, 11, 73, 75, 125, 170—171, 174, 178, 180, 185, 188, 190, 192, 201, 207, 221, 226—227, 241
Bishop R.L., Crittenden R.J. — Geometry of manifolds25
Carmeli M. — Classical Fields: General Gravity and Gauge Theory470, 562
Gatermann K. — Computer Algebra Methods for Equivariant Dynamical Systems56
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems39
Landau L.D., Lifshitz E.M. — The classical theory of fields409
Steenrod N. — The topology of fiber bundles32
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity165
Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics)13
Eisenbud D., Harris J. — The geometry of schemes (textbook draft)161
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry93, 96
Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras15
Morita S. — Geometry of Differential Forms22
Suykens J.A.K., Horvath G. — Advanced learning theory: methods, moduls and applications301
Zakharov V.D. — Gravitational waves in Einstein's theory13, 14, 15
Brickell F., Clark R.S. — Differentiable manifolds210
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectrasee Group
Montgomery D., Zippin L. — Topological transformation groups49
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications175
Cohen A. — An Introduction to the Lie Theory of One-parameter Groups. With Applications to the Solution of Differential Equations3
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.116
Cohn P.M. — Lie Groups44
Israel W. (ed.) — Relativity, astrophysics and cosmology300-305
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories26
Hausner M., Schwartz J.T. — Lie groups, Lie algebras37
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 138
Serre J.-P. — Lie Algebras and Lie Groups102
Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem109
Puri P.R. — Mathematical methods of quantum optics56
McBride E.B. — Obtaining Generating Functions27, 29, 44, 47, 51
Porteous I.R. — Clifford Algebras and the Classical Groupsix, 100, 103, 215, 231
Mielke A. — Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems41
Tzenov S.I. — Contemporary Accelerator Physics99
Silverman J. — The arithmetic of dynamical systems6
Mathews J., Walker R.L. — Mathematical methods of physics449
Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups6.1.15
Candel A., Conlon L. — Foliations I10
Boerner H. — Representations of Groups41
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems316
Grosswald E. — Bessel Polynomials41, 46, 47
Frankel T. — The geometry of physics: an introduction391—412
Hartshorne R. — Algebraic Geometry328
Greiner W. — Relativistic quantum mechanics. Wave equations391
Borówko M. (ed.) — Computational Methods in Surface and Colloid Science800, 835, 836, 842, 843
Miller W. — Symmetry and Separation of Variables260
Wald R.M. — General Relativity168—169
Bluman G.W. — Similarity Methods for Differential Equations143
Schiff L.I. — Quantum Mechanics195
Israel W. (ed.) — Relativity, astrophysics and cosmology300—305
Lemm J.C. — Bayesian field theory82, 118, 266
Pier J.-P. — Mathematical Analysis during the 20th Century179, 189
Jahne B., Haubecker H. — Computer vision and applications384
Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s633, 635, 698—699
Margalef-Roig J., Outerelo Dominguez E. — Differential topology283
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds171
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists115, 140, 269
Giles R. — Mathematical foundation of thermodynamics166
Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups105, 118
Bertram W. — The Geometry of Jordan and Lie Structures (Lecture Notes in Mathematics)I.1
Heinonen J. — Lectures on Analysis on Metric Spaces67
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics)20, 256
Suter D. — The physics of laser-atom interactions122
Frankel T. — The geometry of physics: An introduction391—412
Greiner W., Maruhn J. — Nuclear models65
Flanders H. — Differential Forms with Applications to the Physical Sciences150 ff
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics136
Santalo L., Kac M. — Integral geometry and geometric probability149
Schutz B. — Geometrical Methods in Mathematical Physics12, 29, 87, 92, 188 Lie group, abelian
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory87
Zorich V.A., Cooke R. — Mathematical analysis II72, 336
Zorich V. — Mathematical Analysis72, 336
Sagle A. A. — Introduction to Lie groups and Lie algebras105
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics116
Mathews J., Walker R.L. — Mathematical Methods of Physics449
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics2—3
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201)22
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)293
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)293
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)293
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå