Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 23 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 143 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 357, 539 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 677 |
Berger M. — A Panoramic View of Riemannian Geometry | 170 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 39, 490 |
Olver P.J. — Equivalence, Invariants and Symmetry | 32, 48, 53, 54, 254, 268, 435, 441 |
Oprea J. — Differential Geometry and Its Applications | 344 |
Eisenbud D., Harris J. — The Geometry of Schemes | 161 |
Husemoeller D. — Elliptic curves | 19 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 187 |
Goldberg S.I. — Curvature and homology | 103 |
Silverman J.H. — The arithmetic of elliptic curves | 158, 161, 162 |
Hicks N. — Notes on differential geometry | 5 |
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 249 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 209, 223 (5.5) |
Michor P.W. — Gauge Theory for Fiber Bundles | 5 |
Fulton W., Harris J. — Representation Theory: A First Course | 93 |
Mimura M., Toda H. — Topology of Lie Groups, I and II | 39, 80, 279, 280 |
Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 239 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 36, 37, 39, 41, 47, 63, 66, 67, 84, 89, 90, 139, 189, 206, 208, 211, 213, 258—260, 264 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 411, 412, 611—613 |
Lee J.M. — Introduction to Topological Manifolds | 10 |
Debnath L. — Nonlinear water waves | 172, 194 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 369 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 310, 356—357 |
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 27, 28, 33, 331ff, 336, 337, 363, 367, 375, 385, 387, 405, 416, 417, 424, 426, 427 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 533 |
Ryder L.H. — Quantum Field Theory | 31 |
Knapp A.W. — Elliptic Curves (MN-40) | 376 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 121, 138, 420 |
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 33 |
Thomas Ch.B. — Representations of Finite and Lie Groups | 75 |
Michor P.W. — Topics in Differential Geometry | 36 |
Torretti R. — Relativity and Geometry | 268, 269 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 730 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 125, 140, 142, 143—150, 192, 210, 240, see also general linear, orthogonal, unitary, special linear, spinor and symplectic groups |
Reid M., Szendroi B. — Geometry and Topology | see compact Lie group, 142—164, 169 |
Hatcher A. — Algebraic Topology | 282 |
Atiyah M. — Representation Theory of Lie Groups | 65, 93, 94 |
Sabinin L.V. — Smooth Quasigroups and Loops | 48 |
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 187 |
Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 41 |
Gallot S., Hulin D. — Riemannian Geometry | 1.70 ff., 1.129 ff., 2.34, 2.47, 2.108, 3.17, 3.81, 3.84, 3.84, 3.86, 3.105. |
Masujima M. — Path integral quantization and stochastic quantization | 104, 107, 108 |
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 486 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 30 |
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 316 |
Petersen P. — Riemannian Geometry | 6 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 81—89 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 20, 309 |
Suykens J.A.K., Horvath G., Basu S. — Advances in learning theory: methods, models and applications | 301 |
Steenrod N.E. — The Topology of Fibre Bundles | 32 |
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 1, 7, 32 |
Ziman J.M. — Elements of Advanced Quantum Theory | 239—257 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-38 |
Brickell F., Clark R.S. — Differentiable Manifolds | 210 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 559 |
Georgi H. — Lie algebras in particle physics | 8 |
Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 98 |
Morita S. — Geometry of differential forms | 22 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 122 |
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 194 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 95 |
Morita Sh. — Geometry of Differential Forms | 22 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | viii, ix, 195, 240, 241, 307, 309, 367, 376, 383, 391 |
Bleecker D. — Gauge Theory and Variational Principles | 18 |
Simon B. — Representations of Finite and Compact Groups | 128 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 151 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 527 |
Tapp K. — Matrix Groups for Undergraduates | 159 |
Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 314 |
Grosswald E. — Bessel Polynomials | 41, 46, 47 |
Serre J.-P. — Lectures on the Mordell-Weil Theorem | 60, 149 |
Greiner W., Muller B. — Gauge theory of weak interactions | 307 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 1 ff |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 80, 290 |
do Carmo M.P. — Riemannian geometry | 39 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 2.12, 3.8 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 8, 49, 67 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 232 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 371 |
Munkres J.R. — Analysis on manifolds | 209 |
Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory | 7, 85 |
Kirillov A.A. — Elements of the Theory of Representations | 83 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 131 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 1.8.7.3, 2.7.5.12, 8.10.1, 12.6.8 |
Fenn R. — Geometry | 42, 294 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 140, 213—233 (see also “SU(2)”) |
Audin M. — Torus Actions on Symplectic Manifolds | 9, 32 |
Eisenhart L.P. — Continuous groups of transformations | 40 |
Mehta M.L. — Random Matrices | 648, 653 |
Kumar P., D'Ariano G.M., Hirota O. — Quantum communication, computing, and measurement 2 | 144 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 131 |
Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 35 (see also SU entries) |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 37 ff. |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 88—95 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 63, 77, 84, 87—229 |
Miller W. — Lie theory and special functions | 1 |
Price J.F. — Lie groups and compact groups | 25 |
Oprea J. — Differential Geometry and Its Applications | 424 |
Basdevant J.-L., Dalibard J. — Quantum Mechanics | 190, 218, 246 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 62 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 81—89 |
Curtis M.L. — Abstract Linear Algebra | 132 |
Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 118 |
Nash C. — Differential Topology and Quantum Field Theory | 9, 11, 73, 75, 125, 170—171, 174, 178, 180, 185, 188, 190, 192, 201, 207, 221, 226—227, 241 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 25 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 470, 562 |
Gatermann K. — Computer Algebra Methods for Equivariant Dynamical Systems | 56 |
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 39 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 409 |
Steenrod N. — The topology of fiber bundles | 32 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 165 |
Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 13 |
Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 161 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 93, 96 |
Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras | 15 |
Morita S. — Geometry of Differential Forms | 22 |
Suykens J.A.K., Horvath G. — Advanced learning theory: methods, moduls and applications | 301 |
Zakharov V.D. — Gravitational waves in Einstein's theory | 13, 14, 15 |
Brickell F., Clark R.S. — Differentiable manifolds | 210 |
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra | see Group |
Montgomery D., Zippin L. — Topological transformation groups | 49 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 175 |
Cohen A. — An Introduction to the Lie Theory of One-parameter Groups. With Applications to the Solution of Differential Equations | 3 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 116 |
Cohn P.M. — Lie Groups | 44 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 300-305 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 26 |
Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 37 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 38 |
Serre J.-P. — Lie Algebras and Lie Groups | 102 |
Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem | 109 |
Puri P.R. — Mathematical methods of quantum optics | 56 |
McBride E.B. — Obtaining Generating Functions | 27, 29, 44, 47, 51 |
Porteous I.R. — Clifford Algebras and the Classical Groups | ix, 100, 103, 215, 231 |
Mielke A. — Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems | 41 |
Tzenov S.I. — Contemporary Accelerator Physics | 99 |
Silverman J. — The arithmetic of dynamical systems | 6 |
Mathews J., Walker R.L. — Mathematical methods of physics | 449 |
Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 6.1.15 |
Candel A., Conlon L. — Foliations I | 10 |
Boerner H. — Representations of Groups | 41 |
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 316 |
Grosswald E. — Bessel Polynomials | 41, 46, 47 |
Frankel T. — The geometry of physics: an introduction | 391—412 |
Hartshorne R. — Algebraic Geometry | 328 |
Greiner W. — Relativistic quantum mechanics. Wave equations | 391 |
Borówko M. (ed.) — Computational Methods in Surface and Colloid Science | 800, 835, 836, 842, 843 |
Miller W. — Symmetry and Separation of Variables | 260 |
Wald R.M. — General Relativity | 168—169 |
Bluman G.W. — Similarity Methods for Differential Equations | 143 |
Schiff L.I. — Quantum Mechanics | 195 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 300—305 |
Lemm J.C. — Bayesian field theory | 82, 118, 266 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 179, 189 |
Jahne B., Haubecker H. — Computer vision and applications | 384 |
Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 633, 635, 698—699 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 283 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 171 |
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 115, 140, 269 |
Giles R. — Mathematical foundation of thermodynamics | 166 |
Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups | 105, 118 |
Bertram W. — The Geometry of Jordan and Lie Structures (Lecture Notes in Mathematics) | I.1 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 67 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 20, 256 |
Suter D. — The physics of laser-atom interactions | 122 |
Frankel T. — The geometry of physics: An introduction | 391—412 |
Greiner W., Maruhn J. — Nuclear models | 65 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 150 ff |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 136 |
Santalo L., Kac M. — Integral geometry and geometric probability | 149 |
Schutz B. — Geometrical Methods in Mathematical Physics | 12, 29, 87, 92, 188
Lie group, abelian |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 87 |
Zorich V.A., Cooke R. — Mathematical analysis II | 72, 336 |
Zorich V. — Mathematical Analysis | 72, 336 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 105 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 116 |
Mathews J., Walker R.L. — Mathematical Methods of Physics | 449 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 2—3 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 22 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 293 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 293 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 293 |