| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Weintraub S. — Differential Forms. A complement to vector calculus |  | 
| Guillemin V., Pollack A. — Differential topology | 55, 132 | 
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 31, 125 | 
| Rudin W. — Principles of Mathematical Analysis | 281 | 
| Apostol T.M. — Calculus (vol 2) | 243 | 
| Keisler H.J. — Elementary calculus | 805 | 
| Berger M. — A Panoramic View of Riemannian Geometry | 720 | 
| Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 20 | 
| Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 93 | 
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 84 | 
| Olver P.J. — Equivalence, Invariants and Symmetry | 17, 20, 23, 36, 55, 69, 84, 107, 117, 253, 369 | 
| Oprea J. — Differential Geometry and Its Applications | 70, 193, 317 | 
| Wesseling P. — An introduction to multigrid methods | 215 | 
| Wesseling P. — Principles of computational fluid dynamics | 486 | 
| Husemoeller D. — Elliptic curves | 347 | 
| Cossec F., Dolgachev I. — Enriques surfaces | 20 | 
| Kodaira K. — Complex manifolds and deformation of complex structures | 63 | 
| Felsager B. — Geometry, particles and fields | 275 | 
| Hille E. — Ordinary Differential Equations in the complex domain | 297 | 
| Messer R. — Linear Algebra: Gateway to Mathematics | 55 | 
| Hicks N. — Notes on differential geometry | 8 | 
| Babich V.M., Buldyrev V.S. — Short-wavelength diffraction theory | 417 | 
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 19 | 
| Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 5, 25 | 
| Abell M.L., Braselton J.P. — Mathematica by Example | 347 | 
| Conte R. — Painleve Property: One Century Later | 593, 596, 601, 602, 604, 611, 623, 625, 626, 643, 645 | 
| Fulton W., Harris J. — Representation Theory: A First Course | 114 | 
| Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 69 | 
| Lukac R., Plataniotis K.N. — Color Image Processing: Methods and Applications | 76, 96, 378 | 
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 13, 15, 18, 68, 74, 80, 82, 83, 93, 94, 122, 123, 138, 143, 198, 218, 241, 279, 373, 426, 434- 436, 438 | 
| Lee J.M. — Introduction to Topological Manifolds | 192, 322 | 
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 102 | 
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 127 | 
| Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics | 51 | 
| Brin M., Stuck G. — Introdution to dynamical system | 107, 139 | 
| Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | 113, 119 | 
| Pedersen G.K. — C*-algebras and their automorphism groups | 140 | 
| Hand L.N., Finch J.D. — Analytical Mechanics | 235 | 
| Gonzalez-Miranda J.M. — Synchronization and Control of Chaos: An Introduction for Scientists and Engineers | 18 | 
| Kock A. — Synthetic Differential Geometry | 39 | 
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 136, 325 | 
| Lynch S. — Dynamical Systems with Applications Using Mathematica® | 42 | 
| Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 2 | 
| Michor P.W. — Topics in Differential Geometry | 17 | 
| Kempf G.R. — Algebraic Varieties | 79 | 
| Torretti R. — Relativity and Geometry | 260, 265, 348 note 7 | 
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 534 | 
| Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 33, 36, 39, 40, 53, 144, 189, 190, 191, 193, 226, 233 | 
| Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 308 | 
| Atiyah M. — Representation Theory of Lie Groups | 92 | 
| Thomas A.D. — Zeta-functions | 163 | 
| Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 149 | 
| Chu C.-H., Lau A.T.-M. — Harmonic Functions on Groups and Fourier Algebras | 79 | 
| Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 5 | 
| Bratteli O. — Derivations, Dissipations and Group Actions on C-Algebras | 34 | 
| Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 16 | 
| Roman P. — Introduction to quantum field theory | 17, 22, 39, 52, 103 | 
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 335 | 
| Wall C.T., Bruce J.W. (Ed) — Singular Points of Plane Curves | 104 | 
| Dugunji J. — Topology | 342 | 
| Shankar R. — Basic Training In Mathematics | 158 | 
| Catanese F. (Ed) — Global Aspects of Complex Geometry | 133 | 
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 193—196, 205, 271 | 
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 268, 404, 527 | 
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 268, 404 | 
| Greiner W. — Classical mechanics. Point particles and relativity | 83 | 
| Naber G.L. — Topology, Geometry and Gauge Fields | 6, 178 | 
| Vick J.W. — Homology theory. An introduction to algebraic topology | 29 | 
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 617 | 
| Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 1 | 
| Besse A.L. — Einstein Manifolds | 21 | 
| Walecka J.D. — Fundamentals of statistical mechanics | 133 | 
| Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 134 | 
| Kadanoff L.P. — Statistical physics | 361 | 
| Ziman J.M. — Elements of Advanced Quantum Theory | 183, 187 | 
| Lang S.A. — Undergraduate Analysis | 390, 538 | 
| Ramond P. — Field Theory: A Modern Primer | 28 | 
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-5 | 
| Boas R.P. — A Primer of Real Functions | 79 | 
| Steenrod N.E. — First Concepts of Topology | 111 | 
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 80, 128, 130 | 
| Lang S. — Real Analysis | 132, 499 | 
| Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 9 | 
| Morita S. — Geometry of differential forms | 9, 37 | 
| Sokolnikoff I.S. — Higher Mathematics  for  Engineers and Physicists | 406, 408, 409, 412, 4423 | 
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 105 | 
| Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 21 | 
| Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 67, 71, 75, 76, 78—82, 84, 85, 89, 136, 234, 235, 237 | 
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 53 | 
| Morita Sh. — Geometry of Differential Forms | 9, 37 | 
| Featherstone R. — Rigid Body Dynamics Algorithms | 12 | 
| Greenberg M.D. — Advanced engineering mathematics | 759 | 
| Bleecker D. — Gauge Theory and Variational Principles | 8 | 
| Stewart J. — Advanced general relativity | 13 | 
| Simon B. — Representations of Finite and Compact Groups | 123 | 
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 2 | 
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 28 | 
| Tapp K. — Matrix Groups for Undergraduates | 73 | 
| Bailin D., Love A. — Introduction to Gauge Field Theory | 33 | 
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 11 ff, 15 | 
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 95 | 
| Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Vectors” | 
| Strichartz R.S. — The way of analysis | 501 | 
| do Carmo M.P. — Riemannian geometry | 25 | 
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-1-4 f, II-2-1 ff | 
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 63, 216, 243 | 
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 15 | 
| Woodhouse N.M.J. — Special Relativity | 25 | 
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 1 | 
| Mercier A. — Analytical and canonical formalism in physics | 61, 70, 79, 83, 84, 89 | 
| Filipovic D. — Consistency problems for Heath-Jarrow-Morton interest rate models | 97 | 
| Kirillov A.A. — Elements of the Theory of Representations | 71 | 
| Oden J.T. — Finite Elements: An Introduction (Vol. 1) | 133, 222, 240 | 
| Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 3 | 
| Logan J.D. — Invariant Variational Principles | 77, 82, 92, 105—107, 145—147 | 
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 58, 61 | 
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.2, 8.1.1, 18.2.5.3 | 
| Munkres J. — Topology | 350 | 
| Granas A., Dugundji J. — Fixed Point Theory | 103, 241, 246 | 
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 250, 423, 561 | 
| Desloge E.A. — Classical Mechanics. Volume 1 | 409 | 
| Janich K. — Topology | 19,37,121 | 
| Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 128 | 
| Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 17 | 
| Tamura I. — Topology of lie groups, I and II | 4, 10, 60 | 
| Dijkstra H.A. — Nonlinear physical oceanography | 68 | 
| Kuttler K. — Calculus, Applications and Theory | 372, 593 | 
| Olver P.J., Shakiban C. — Applied linear. algebra | 82 | 
| Kreyszig E. — Advanced engineering mathematics | 384 | 
| O'Neill B. — The Geometry of Kerr Black Holes | 4 | 
| Hormander L. — The analysis of linear partial differential operators I | 148 | 
| Greiner W., Mueller B. — Quantum mechanics: symmetries | 42 ff. | 
| Siegel W. — Fields | IC2 | 
| Price J.F. — Lie groups and compact groups | 13 | 
| Hatfield B. — Quantum field theory of point particles and strings | 544 | 
| Arwini K. — Information Geometry: Near Randomness and Near Independence | 26 | 
| Oprea J. — Differential Geometry and Its Applications | 81, 82, 337, 402 | 
| Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 38, 88, 109 | 
| Fischer G. — Complex Analytic Geometry | 85 | 
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 94, 163, 175 | 
| Anderson G.A., Granas A. — Fixed Point Theory | 103, 241, 246 | 
| Rose M.E. — Elementary theory of angular momentum | 77, 81, 98—105 | 
| Grasman J. — Asymptotic methods for relaxation oscillations and applications | 2, 191 | 
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 365, 544 | 
| Conte R. — The Painlevé property: One century later | 593, 596, 601, 602, 604, 611, 623, 625, 626, 643, 645 | 
| Haller G. — Chaos Near Resonance | 377 | 
| Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 35, 107 | 
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 13 | 
| Friedlander F.G. — The Wave Equation on a Curved Space-Time | 6 | 
| Blanchard P., Devaney R.L. — Differential Equations | 171, 173 | 
| Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 199 | 
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 24, 25 | 
| Kleinert H. — Gauge fields in condensed matter (part 4) | 830, 1343 | 
| Kaplan W. — Introduction to analytic functions | 15, 83, 146 | 
| Naimark M.A., Stern A.I. — Theory of Group Representations | 332 | 
| Browder A. — Mathematical Analysis: An Introduction | 260, 288 | 
| Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 62, 147 | 
| Morita S. — Geometry of Differential Forms | 9, 37 | 
| Goffman C. — Calculus of several variables | 167 | 
| Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 2 | 
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 12, 303 | 
| Hermann R. — Differential geometry and the calculus of variations | 3, 10, 19, 22, 24, 27, 34, 35, 39, 43, 46 | 
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 605 | 
| Amari S.-I., Nagaoka H. — Methods of Information Geometry | 8 | 
| Thomas A.D. — Zeta functions, introduction to algebraic geometry | 163 | 
| Amari Sh. — Differential Geometrical Methods in Statistics (Lecture notes in statistics) | 32 | 
| Kinsey L.C. — Topology of surfaces | 202, 221 | 
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 132 | 
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 58, 295 | 
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 9 | 
| Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 31 | 
| Munkres J.R. — Topology: A First Course | 364 | 
| Demidovich B. (ed.) — Problems in mathematical analysis | 288 | 
| Ross G. — Grand Unified Theories | 29, 39 | 
| Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 19 | 
| Siegel W. — Fields | IC2 | 
| Vasil'ev V. A., Sossinski A. — Introduction to Topology | 66 | 
| Carroll R.W. — Mathematical physics | 359, 371 | 
| Lang S. — Undergraduate analysis | 390, 538 | 
| Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 1, 2, 8, 470 | 
| Moskowitz M.A. — Adventures in mathematics | 102, 103 | 
| Misra J.C. — Biomathematics: Modelling and Simulation | 407 | 
| de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 17 | 
| Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 1.1.23 | 
| Loomis L.H., Sternberg S. — Advanced calculus | 44 | 
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 209 | 
| Lane S.M. — Mathematics, form and function | 173, 250, 275 | 
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 4, 11 | 
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 335 | 
| Naber G.L. — Topology, Geometry and Gauge Fields | 6, 178 | 
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 37 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 129 | 
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 121 | 
| Synge J.L., Griffith B.A. — Principles of Mechanics | 28 | 
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 156 | 
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 243 | 
| Ticciati R. — Quantum field theory for mathematicians | 246 | 
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 58, 295 | 
| Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 419 | 
| Zeidler E. — Oxford User's Guide to Mathematics | 360 | 
| Lemm J.C. — Bayesian field theory | 118 | 
| Pier J.-P. — Mathematical Analysis during the 20th Century | 291 | 
| Israel W. — Relativity, Astrophysics and Cosmology | 58, 295 | 
| Vidyasagar M. — Nonlinear systems analysis | 55, 378 | 
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 176 | 
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 87 | 
| Higham D.J., Higham N.J. — MATLAB guide | 177, 178 | 
| Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 45, 49 | 
| Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 9—12, 147, 149—150 | 
| Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 16, 23, 54, 139, 142, 148 | 
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 73 | 
| Frankel T. — The geometry of physics: An introduction | 25
Vector field, flow (1-parameter group) generated by | 
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-1-4 f, II-2-1 ff | 
| Greiner W., Maruhn J. — Nuclear models | 35 | 
| Kleinert H. — Gauge fields in condensed matter (part 2) | 84 | 
| Flanders H. — Differential Forms with Applications to the Physical Sciences | 54, 179 ff | 
| Schutz B. — Geometrical Methods in Mathematical Physics | 34, 42
Vector field, components of | 
| Canuto C., Tabacco A. — Mathematical analysis | 376 | 
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 109 | 
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 78 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 132 | 
| Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 5, 8, 22, 31 | 
| Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 47 | 
| Nash C., Sen S. — Topology and geometry for physicists | 5—8, 41, 156—158 | 
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 9, 37 | 
| Robert E Marshak — Meson physics | 32, 34, 57—58, 140, 145, 149, 153—154, 158, 237, 273 | 
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 292 |