Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kaplan W. — Introduction to analytic functions
Kaplan W. — Introduction to analytic functions



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to analytic functions

Àâòîð: Kaplan W.

Àííîòàöèÿ:

The present volume can be considered as a revised and considerably enlarged version of the author's A First Course in Functions of a Complex Variable, which was essentially a reprint of Chapter 9 of the author's Advanced Calculus. The material of that chapter has now been broken up into eight separate chapters, many of the references to other chapters of advanced Calculus have been avoided by rewriting, and a large new chapter has been added on analytic functions of several complex variables. This book is therefore a self-contained introduction to the theory of analytic functions of one or more complex variables.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1966

Êîëè÷åñòâî ñòðàíèö: 212

Äîáàâëåíà â êàòàëîã: 07.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel summation of series      144—145 (Prob. 5)
Abel’s theorem      65
Absolute convergence      10 172 176 178 180 182 184
Absolute value      2
Addition      2
Airy’s stress function      148
Algebraic branch point      162
Algebraic equation      115 (Prob. 5)
Amplitude      2
Analytic at a point      39
Analytic at infinity      94
Analytic continuation      49 75 159—163 166 189—195 201—202
Analytic function      35 54 74 123 166—167
Analytic, along a curve      39
angle      2 4—5
Annular domain      89 184—185
Arc length      31
Argument of complex number      2 54—55
Argument, Principle      112 197
Arithmetic mean      72 82
Associated radii of convergence      184 (Probs. 7 8)
Average value      72 82
Biharmonic equation and functions      148—150 151
Boundary, conditions      136—137
Boundary, points      14 91 168
Boundary, value problem      135—145
Bounded function      77 (Probs. 7 8) 201
Branch      53—61 159
Branch, point      54 59 60 162
Cauchy — Riemann equations      27—28 (Probs. 9 10) 33 36 83 146 175
Cauchy, criterion      9
Cauchy, inequalities      77 (Prob. 7)
Cauchy, integral formula      71—72 170
Cauchy, integral theorem      42—43 69—70 74
Cauchy, Residue Theorem      102
Change of variable in integrals      45—46
Circle of convergence      64 75
Closed poly cylinder      169
Comparison test for series      11
Complete Reinhardt domain      179 183 192 195
Complex conjugate      2
Complex n-dimensional space      166
Complex number infinity      9—10 18 94—96 107
Complex number system      1—4
Conformal mapping      122—158
Conjugate harmonic functions      79
Continuity      16—18 167
convergence of integrals      119
Convergence of sequences      8—9 19
Convergence of series      10—12 19
Convergence region of power series      62 176—184
Convex      125 181 192
Convex, hull      191 194—195 4)
Critical points      133 (Prob.7)
Cross ratio      133—134 (Prob.9)
Curl of a vector field      83 146
De l’Hopital’s rule      115
De Moivre theorem      5
Definite integral      116—121
Degree of rational function      98—99 (Prob.9)
Deleted neighborhood      90
Derivative      22—28
Differential      24
Differential equation      68 (Prob.4)
Differentiation of integrals      44—45 47 (Prob.4) 85 171
Differentiation of series      66—67
Directional derivative      23 39—40
Dirichlet problem      135—145
Distance      3 166
Divergence of a vector field      83 146
Divergence of sequences, series, integrals      (see Convergence)
Diverges to infinity      9
Domain      14 167
Domain of convergence      62 176
Double series      172 185
Doubly connected      69
Electrostatic potential      143 (Prob.2)
Elementary analytic functions      47—51
Entire function      77 (Prob.8)
Envelope of holomorphy      191—195
equation      (see Algebraic equation)
Equilibrium      143 (Prob.3)
Equipotential lines      146
Error, estimation of      31 75
Essential singularity      92 95 201
Euler identity      6
Exponential function      6 48 50 58 129—130
Exponential function, transformation      129—130
Extended z plane      96
Finite z plane      96
Flow past an obstacle      147
Fluid Motion      (see Hydrodynamics)
Fourier, integral      119
Fourier, series      51 64—65 83 144 5)
Function      14—16 53—54 122
Function of several complex variables      165
Functional equation, permanence of      49 161
Fundamental theorem of algebra      115 (Prob.5)
Generalized polycylindrical domain      168
Geometric series      19—21 64
Harmonic, conjugate      79
Harmonic, function      iii-iv 22—23 33 35 79—83 135—145
Holomorphic function      167
Hydrodynamics      146—148 151 2)
Hyperbolic functions      48—51
Imaginary part      2
Incompressible flow      146—148 151 2)
Indefinite integral      44 48
Independence of path      43
Indirect analytic continuation      160 190
Inequality      3 31 77
Infinite, sequences      8—12 19
Infinite, series      (see also Fourier series Power
Infinity, complex      9—10 18 94—96 107
Integral, complex      28—32
Integral, depending on a parameter      85 (Prob. 9)
Integral, function      77 (Prob. 8)
Integration of series      32
Interior points of a sot      178—179
Inverse, functions      53—54 84 123 124
Inverse, logarithmic image      191 195
Inverse, points      134 (Prob.10)
Inverse, trigonometric functions      60
Irrotational      146
Isolated, boundary point      91
Isolated, singularity      91 194
Isolation of zeros      93 190 195
Iterated series      173
Jacobian determinant      112
Kronecker integral      111
Laplace equation      (see Harmonic functions)
Laurent series      88—121 184—189
Leibnitz rule for integrals      47 (Prob. 4) 85 171
Level curves      124 128—131
LIMIT      8—10 16—19 167
Line integral      29
Linear, fractional transformation      126
Linear, integral transformation      126
Linear, transformation      199
Liouville’s theorem      77 (Prob.8) 203
Logarithmic, branch point      54
Logarithmic, convexity      181 183 192
Logarithmic, derivative      110
Logarithmic, function      55—57
Logarithmic, image      181 184
Logarithmic, potential      86 (Prob. 9)
Logarithmic, residue      110
M-test for series      20
M-uniformly convergent      173 179 185
Mapping      (see Conformal mapping Transformation)
Modulus      2
Morera’s theorem      44
Multiplication      2—7
Multiplication of HorioH      12
Multiplicity of zero      93 95
Multiply connected      69 72
Neighborhood      14 90 167
Nonessential singularity      201 203
Nonessential singularity wth-term test      11
One-to-one transformation      112—113 122—125 152
Open region      14 167
Order of pole      92 95
Order of zero      93 95
Partial, derivative      167 171
Partial, sum of series      10
Piecewise smooth path      28
Poisson, equation      150
Poisson, integral formula      80—86 130—137 140 144—145
Poisson, summation of series      144—145 (Prob.5)
Polar form of complex numbers      4
Pole      92 95 103 201
Polycylindrical domain      108
Polynomial      17—18 48 167
Power, function      5—7 58—59
Power, series      62—87 88—90 172 176 180
Prime      200 202
Principal, part      92
Principal, value of function      56 58
Principal, value of integral      119
Prob.      11
Pseudoalgebraic equation      196
Pseudopolynomial      196—200
Pure imaginary      2
Radius of convergence      62—63 75
Ratio Test      11 63—64
Rational function      18 48 98 114 4) 126—127
Real part      2
Rearrangement of series      172—173 176
Reciprocal transformation      126
Reinhardt domain      178 181 184 185 192 195 6)
Removable singularity      91 94 99 194 195 200—203
Residues      101—121
Riemann, surfaces      162—163
Riemann, theorem of      99 (Prob.12) 201
Root test      11
Roots      5—7 16 58—60 115
Rotation-stretching      125—126
Schwarz-Christoffel transformation      154
Sense-preserving      122
Sequences      (see Infinite sequences)
Series      (see Infinite series)
Simply connected      42—43 71 80
Singular point      91 200—203
Slit domain      147
Smooth path      28
Stationary flow      146—148
Stereographic projection      95
Stream function and lines      146
Stress function and tensor      148
Subtraction      2—3
Sum of numbers      2
Sum of series      10
Tangent vector      26 (Prob.7) 123 135
Taylor, formula with remainder      75
Taylor, series      35 67 73—74 172—180
Temperature      143 (Prob. 3) 151
Tensor      148
Transformation      15 112—113 122—158 199
Translation      125
Triangle inequality      3
Trigonometric, functions      48—52
Trigonometric, series      51 64—65 83 144 5)
Triply connected      69
Uniform convergence      19—21 32 62 173
Uniqueness of analytic continuation      159 190
Vector field      15 83 146
Velocity potential      146
Weierstrass and Casorati, theorem of      99 (Prob. 13)
Weierstrass, M-test      20 173
Weierstrass, preparation theorem      196—200
Zeros of functions      16 52 93 95 98—99 9 10) 166 195—200
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå