| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Nagel R. — One-parameter semigroups of positive operators | 236 | 
| Arveson W. — An Invitation to C-Algebras | 10 | 
| Rudin W. — Fourier Analysis on Groups | 261 | 
| Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 714, 725, 731 | 
| Dummit D.S., Foote R.M. — Abstract algebra | 242ff | 
| Lang S. — Algebra | 86 | 
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 289 | 
| Nathanson M.B. — Elementary methods in number theory | 90, 171 | 
| Ewald G. — Combinatorial convexity and algebraic geometry | 200 | 
| Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 1.4, 1.B | 
| Cohn H. — Advanced Number Theory | 114 | 
| Pollard H., Diamond H.G. — The Theory of Algebraic Numbers | 95 | 
| Chagrov A., Zakharyaschev M. — Modal logic | 208 | 
| Olver P.J. — Equivalence, Invariants and Symmetry | 55 | 
| Cahn R.N. — Semi-Simple Lie Algebras and Their Representations | 22 | 
| Eisenbud D., Harris J. — The Geometry of Schemes | see “Prime, maximal, minimal” | 
| Pommaret J.F. — Differential Galois Theory | IB 2.14 | 
| Branwyn G. — Absolute Beginner's Guide to Building Robots |  | 
| Matsumura H. — Commutative ring theory | ix, 1 | 
| Schenck H. — Computational algebraic geometry | 165 | 
| Mishra B. — Algorithmic algebra | 23, 28, 69, 139 | 
| Hoffman K., Kunze R. — Linear algebra | 131 | 
| Majid S. — Foundations of Quantum Group Theory | 4 | 
| Lueneburg H. — Tools and fundamental constructions of combinatorial mathematics | 443 | 
| Miller E., Sturmfels B. — Combinatorial Commutative Algebra | See also Monomial ideal | 
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 12, 22 | 
| Becker T., Weispfenning V. — Groebner bases and commutative algebra | 25 | 
| Kreuzer M., Robbiano L. — Computational commutative algebra 1 | 18 | 
| Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 76 | 
| Bochner S., Martin W.T. — Several Complex Variables | 204 | 
| Rudin W. — Real and Complex Analysis | 149, 309, 357, 365 | 
| de Branges L., Rovnyak J. — Square summable power series | 10 | 
| Conway J.B. — Functions of One Complex Variable | 174 | 
| MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 116 | 
| Melrose R. — The Atiyah-Singer index theorem (part 3) | 31 | 
| Reid M. — Undergraduate commutative algebra | 19 | 
| Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | see Nonideal | 
| Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 163 | 
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 47 | 
| Artin M. — Algebra | 356 | 
| Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 309 | 
| Dummit D.S., Foote R.M. — Abstract Algebra | 242 | 
| Pedersen G.K. — C*-algebras and their automorphism groups | 15 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 512 | 
| Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 35 | 
| Lawvere F.W., Rosebrugh R. — Sets for Mathematics | 230 | 
| Grillet P.A. — Abstract Algebra | 110, 516, 552 | 
| Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains | 3 O—1.3 | 
| Halmos P.R. — Hilbert Space Problem Book | 170, 177 | 
| Lynch S. — Dynamical Systems with Applications Using Mathematica® | 201 | 
| Halmos P.R., Givant S. — Logic as Algebra | 67, 74, 118 | 
| Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 22 | 
| Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 29 | 
| Walker R.J. — Algebraic Curves | 125—127 | 
| Ash R.B. — Abstract algebra: the basic graduate year | 2.2, 8.1 | 
| Engel K. — Sperner theory | 6 | 
| Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 19 | 
| Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 9 | 
| Ueno K. — An Introduction to Algebraic Geometry (Translations of Mathematical Monographs) | 98, 214, 223 | 
| Michor P.W. — Topics in Differential Geometry | 54 | 
| Arveson W. — A Short Course on Spectral Theory | 21 | 
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 58 | 
| Chou S.-C. — Mechanical Geometry Theorem Proving | 23 | 
| Zaharopol R. — Invariant Probabilities of Markov-Feller Operators and Their Supports | 30 | 
| Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 64, 80 | 
| Hobby D., McKenzie R. — The Structure of Finite Algebras | 32 | 
| Lam T.Y. — A first course in noncommutative ring theory | 3, 19 | 
| Lau D. — Function Algebras on Finite Sets | 58 | 
| Van Oystaeyen F.M. — Prime Spectra in Non-Communicative Algebra | 4 | 
| Everest G., Ward T. — An Introduction to Number Theory | 84 | 
| Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 2 | 
| Higson N., Roe J. — Analytic K-Homology | 17 | 
| Lindner M. — Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method | 2 | 
| Hensley D. — Continued Fractions | 28, 29 | 
| Ellis G. — Rings and Fields | 19 | 
| Bauer F.L. — Decrypted Secrets: Methods and Maxims of Cryptology | 493 | 
| Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 43 | 
| Hrbacek K., Jech T. — Introduction to Set Theory | 202 | 
| Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications | 4, 62 | 
| Shoup V.A. — Computational Introduction to Number Theory and Algebra | 4, 231 | 
| Krantz S.G. — Function Theory of Several Complex Variables | 275 | 
| Jetter K. (Ed), Schaback R. (Ed) — Topics in Multivariate Approximation and Interpolation | 212 | 
| Corfield D. — Towards a Philosophy of Real Mathematics | 93, 189, 271 | 
| Kato K., Kurokawa N., Saito T. — Number Theory I. Fermat's Dream | 115 | 
| Aliprantis Ch.D. — Positive Operators | 23 | 
| Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | xiii, 2, 4, 7, 12, 13, 16, 18, 19, 29—34, 49, 50, 56, 57, 69, 86, 93, 97, 98, 101, 107, 108 | 
| Swallow J. — Exploratory Galois Theory | 11 | 
| Alaca S., Williams K.S. — Introductory Algebraic Number Theory | 8 | 
| Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | I 2, IV 26 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 822—823, 1150—1151, 1153 | 
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 61, 157 | 
| James G., Liebeck M.W. — Representations and Characters of Groups | 256 | 
| Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 172, 173 | 
| Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 236 | 
| Kurosh A.G. — Theory of Groups (vol 1) | 105 | 
| Koblitz N. — p-adic numbers, p-adic analysis, and zeta-functions | 63 | 
| Cohen H.A. — A Course in Computational Algebraic Number Theory | 182 | 
| Jones J.A., Jones J.M. — Elementary Number Theory | 234 | 
| Franklin J., Daoud A. — Introduction to Proofs in Mathematics | 65 | 
| Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 317 | 
| Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 11, 102, 103, 201 | 
| Rudin W. — Functional analysis | 263 | 
| Lang S. — Undergraduate Algebra | 6, 87 | 
| Neukrich J. — Algebraic number theory | 16 | 
| Petrich M. — Rings and Semigroups | 6 | 
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 170 | 
| Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 33, 34, 170, 171, 188 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 822—823, 1150—1151, 1153 | 
| Lang S. — Real Analysis | 53 | 
| Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 2, 92 | 
| Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 99 | 
| Rudin W. — Real and complex analysis | 175, 305, 362 | 
| Borceux F., Janelidze G. — Galois Theories | 1, 15, 66 | 
| Gruenberg K.W. — Linear Geometry | 152 | 
| Borel A. — Linear algebraic groups | AG.3.2, AG.3.3, AG.3.4 | 
| Monk J.D. — Mathematical Logic | 146, 223 | 
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 822—823, 1150—1151, 1153 | 
| Borceux F. — Handbook of Categorical Algebra 3 | 168 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 14 | 
| Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 309 | 
| von zur Gathen J., Gerhard J. — Modern computer algebra | 65, 645, 669, 670, 673, 674, 680 | 
| Ãîëóáü Í.Ã. — Èñêóññòâî ïðîãðàììèðîâàíèÿ íà Àññåìáëåðå. Ëåêöèè è óïðàæíåíèÿ | 36 | 
| Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 17.13 | 
| Sakai S. — C*-algebras and W*-algebras | 24 | 
| Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 237, 238, 300 | 
| Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory | II.92 | 
| Guggenheimer H.W. — Differential Geometry | 113 | 
| Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory | 9 | 
| Ruskey F. — Combinatorial generation | 20 | 
| Koblitz N., Wu Y.-H., Menezes A.J. — Algebraic Aspects of Cryptography | 65 | 
| Bollobás B. — Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability | 16, 36 | 
| Beachy J.A. — Abstract Algebra II | 10 | 
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 26, 121 | 
| Froberg R. — An Introduction to Grobner Bases | 10 | 
| Marcus M. — Finite dimensional multilinear algebra. Part I | 160 | 
| Edwards H.M. — Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory | 144 | 
| Hu S.-T. — Elements of real analysis | 211 | 
| McCoy N.H. — Rings and ideals | 52 | 
| Silvester J.R. — Introduction to Algebraic K-Theory | 18 | 
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | see “Measurements”, “Perfect gas”, “Preparations” | 
| Murota K. — Discrete convex analysis | 107 | 
| Stetter H. J. — Numerical polynomial algebra | 14 | 
| Draxl P.K. — Skew fields | 8 | 
| Artin E., Nesbitt C.J., Thrall R.M. — Rings with Minimum Condition | 2 | 
| von Neumann J. — Continuous Geometry | 63, 65, 250, 251 | 
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 223, 290—293, 296, 310, 587 | 
| Aigner M. — Combinatorial Theory | 33 | 
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 82-84 | 
| Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 64, 80 | 
| Petrich M. — Inverse semigroups | 23 | 
| Barwise J. (ed.) — Handbook of Mathematical Logic | 13, 355 | 
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 132, 3, 138, 379 | 
| Jacobson N. — Lectures in Abstract Algebra, Vol. 1 | 65 | 
| Nastasescu C., Oystaeyen F.V. — Dimensions of ring theory | 18, 38 | 
| Bóna M. — A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory | 375 | 
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 9 | 
| Nagata M. — Field Theory | 26 | 
| Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 219 | 
| Butcher J. — Numerical Methods for Ordinary Differential Equations | 283 | 
| Greiner W., Mueller B. — Quantum mechanics: symmetries | 93 ff. | 
| Jonsson B. — Topics in Universal Algebra | 104, 158 | 
| Price J.F. — Lie groups and compact groups | 106 | 
| Rosenfeld B. — Geometry of Lie Groups | 3 | 
| Conway J.B. — A Course  in Functional Analysis | 195 | 
| Herzog B. — Kodaira-Spencer Maps in Local Algebra | 9 | 
| Saxe K. — Beginning functional analysis | 165 | 
| Birknoff — Lattice Theory | 21, 34, 78, 124, 140, 159, 200, 222 | 
| Koblitz N., Menezes A.J. (Contributor), Wu  Y.-H. (Contributor) — Algebraic Aspects of Cryptography | 65 | 
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 55 | 
| Lang S. — Introduction to Algebraic and Abelian Functions | 149 | 
| Jacobson N. — Lectures in Abstract Algebra, Vol. 3 | 7 | 
| Andrews G.E. — Number Theory | see "Integral ideal" | 
| Korevaar J. — Tauberian Theory: A Century of Developments | 237 | 
| Curtis M.L. — Abstract Linear Algebra | 82 | 
| Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 403—405 | 
| Larsen R. — Banach algebras: An Introduction | 4 | 
| Bell E.T. — The Development of Mathematics | 218, 246, 260, 265, 555 | 
| Moh T.T. — Algebra | 118, 144 | 
| Ya Helemskii A., West A. — Banach and locally convex algebras | 81 | 
| Katznelson I.,  KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 197 | 
| Wakimoto M. — Infinite-Dimensional Lie Algebras | 2 | 
| Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 443 | 
| Greub W.H. — Linear Algebra | 143 | 
| Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 5ff, 53ff, see also "Class", "Norm" | 
| Bhaskara Rao K.P.S. — Theory of generalized inverses over commutative rings | 2 | 
| Naimark M.A., Stern A.I. — Theory of Group Representations | 81 | 
| Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | (see Prime, maximal) | 
| Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 3, 182, 425, 426, 429433, 455, 465, 467 | 
| Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 377 | 
| Goffman C., Pedrick G. — First course in functional analysis | 254 | 
| Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 273, 293 | 
| Kuratowski K. — Topology. Volume II | 33 | 
| Hermann R. — Differential geometry and the calculus of variations | 175 | 
| Lindenstrauss J., Tzafriri L. — Classical Banach Spaces I, II | see "Banach lattices" | 
| Hu S.-T. — Introduction to contemporary mathematics | 115, 123 | 
| Pilz G. — Near-rings: the theory and its applications | 15, 16 | 
| Hagen R., Roch S., Silbermann B. — Spectral Theory of Approximation Methods for Convolution Equations | 3 | 
| McCoy N.H. — The theory of rings | 21 | 
| Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 2 | 
| Rosenfeld A. — An introduction to algebraic structures | 91, 214 | 
| Aliprantis C. — Principles of real analysis | 247 | 
| Goldstein L.J. — Analytic Number Theory | 12ff | 
| Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 65, 133, 138, 166ff., 522 | 
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 8, 232 | 
| Knus M.-A. — Quadratic and hermitian forms over rings | 85 | 
| de Graaf W.A. — Lie Algebras: Theory and Algorithms | 1 | 
| Cohn P.M. — Lie Groups | 128 | 
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 20, 110 | 
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 80, 400 | 
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 309 | 
| Dym H., McKean H.P. — Fourier Series and Integrals | 41 | 
| Jategaonkar A.V. — Left Principal Ideal Rings | 2 | 
| Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 6 | 
| Mukherjea A., Tserpes N.A. — Measures on Topological Semigroups: Convolution Products and Random Walks | 2 | 
| Bruck R.H. — A survey of binary systems | 25, 44 | 
| Gelbaum B.R. — Problems in Real and Complex Analysis | 2.3. 24, 6.4. 89 | 
| Greub W.H. — Linear Algebra | 143 | 
| Conway J.H., Smith D.A. — On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry | 4, 58, 99 | 
| Littlewood D.E. — The Skeleton Key of Mathematics | 53 | 
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 293, 294 | 
| Krantz S.G. — Function theory of several complex variables | 275 | 
| Bachman G. — Elements of Abstract Harmonic Analysis | 48 | 
| Howie J.M. — Fields and Galois Theory | 6 | 
| Moskowitz M.A. — Adventures in mathematics | 56 | 
| Moh T.T. — Algebra | 118, 144 | 
| Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 160, 567 | 
| Kunen K. — Set theory | 76 | 
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 296 | 
| Lane S.M. — Mathematics, form and function | 210, 419 | 
| Boerner H. — Representations of Groups | 55 | 
| Van Neerven J. — The Adjoint Of A Semigroup Of Linear Operators | 8.1 | 
| Purser M. — Introduction to error-correcting codes | 31 | 
| Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 377 | 
| Gruenberg K.W., Weir A.J. — Linear Geometry | 152 | 
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 512 | 
| Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 10 | 
| Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms | 29, 498 | 
| Curry H.B. — Foundations of Mathematical Logic | 140 | 
| Laurens Jansen — Theory of Finite Groups. Applications in Physics | 68 | 
| Lang S. — Linear Algebra | 283 | 
| Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics | 287—289, 298 | 
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 441 | 
| Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis | 32 | 
| Zeidler E. — Oxford User's Guide to Mathematics | 670, 718, 1192, 1193 | 
| Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 684, 700, 706 | 
| Hodge W.V.D., Pedoe D. — Methods of Algebraic Geometry: Volume 1 | 11 | 
| Northcott D.G. — Ideal theory | 4 | 
| Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 793 | 
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 108 | 
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 26 | 
| Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 205 | 
| Childs L. — A concrete introduction to higher algebra | 322 | 
| Abhyankar S.S. — Lectures on Algebra Volume 1 | 7, 108, 601 | 
| Behrends E. — LP-Structure in Real Banach Spaces | 47 | 
| Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 41 | 
| Maclane S. — Homology | 10 | 
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 314, 317 | 
| Gill A. — Applied Algebra for the Computer Sciences | 292 | 
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 146, 164, 191 | 
| Curry H.B. — Foundations of mathematical logic | 140 | 
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 20, 110 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 8, 232 | 
| Mac Lane S. — Mathematics: Form and Function | 210, 419 | 
| Yaglom A.M., Yaglom I.M. — Probability and Information | 332, 376 | 
| Koblitz N. — P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed. (Graduate Texts in Mathematics) | 63 | 
| Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 684, 700, 706 | 
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 132—133, 138, 379 | 
| Kline M. — Mathematical thought from ancient to modern times | 822, 823, 1150, 1151, 1153 | 
| Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 126[4.4.6], 469, 484[15.10.2] | 
| Truss J.K. — Foundations of Mathematical Analysis | 58, 140, 279, 328 | 
| Proskuryakov I.V. — Problems in Linear Algebra | 273 | 
| Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 160, 567 | 
| Lindstrum A.O. — Abstract algebra | 128 | 
| Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 202 | 
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 14, 151 | 
| Truss J. — Foundations of mathematical analysis | 58, 140, 279, 328 | 
| J. K. Truss — Foundations of mathematical analysis MCet | 58, 140, 279, 328 |