Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nagel R. — One-parameter semigroups of positive operators | 236 |
Arveson W. — An Invitation to C-Algebras | 10 |
Rudin W. — Fourier Analysis on Groups | 261 |
Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 714, 725, 731 |
Dummit D.S., Foote R.M. — Abstract algebra | 242ff |
Lang S. — Algebra | 86 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 289 |
Nathanson M.B. — Elementary methods in number theory | 90, 171 |
Ewald G. — Combinatorial convexity and algebraic geometry | 200 |
Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 1.4, 1.B |
Cohn H. — Advanced Number Theory | 114 |
Pollard H., Diamond H.G. — The Theory of Algebraic Numbers | 95 |
Chagrov A., Zakharyaschev M. — Modal logic | 208 |
Olver P.J. — Equivalence, Invariants and Symmetry | 55 |
Cahn R.N. — Semi-Simple Lie Algebras and Their Representations | 22 |
Eisenbud D., Harris J. — The Geometry of Schemes | see “Prime, maximal, minimal” |
Pommaret J.F. — Differential Galois Theory | IB 2.14 |
Branwyn G. — Absolute Beginner's Guide to Building Robots | |
Matsumura H. — Commutative ring theory | ix, 1 |
Schenck H. — Computational algebraic geometry | 165 |
Mishra B. — Algorithmic algebra | 23, 28, 69, 139 |
Hoffman K., Kunze R. — Linear algebra | 131 |
Majid S. — Foundations of Quantum Group Theory | 4 |
Lueneburg H. — Tools and fundamental constructions of combinatorial mathematics | 443 |
Miller E., Sturmfels B. — Combinatorial Commutative Algebra | See also Monomial ideal |
Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 12, 22 |
Becker T., Weispfenning V. — Groebner bases and commutative algebra | 25 |
Kreuzer M., Robbiano L. — Computational commutative algebra 1 | 18 |
Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 76 |
Bochner S., Martin W.T. — Several Complex Variables | 204 |
Rudin W. — Real and Complex Analysis | 149, 309, 357, 365 |
de Branges L., Rovnyak J. — Square summable power series | 10 |
Conway J.B. — Functions of One Complex Variable | 174 |
MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 116 |
Melrose R. — The Atiyah-Singer index theorem (part 3) | 31 |
Reid M. — Undergraduate commutative algebra | 19 |
Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | see Nonideal |
Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 163 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 47 |
Artin M. — Algebra | 356 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 309 |
Dummit D.S., Foote R.M. — Abstract Algebra | 242 |
Pedersen G.K. — C*-algebras and their automorphism groups | 15 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 512 |
Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 35 |
Lawvere F.W., Rosebrugh R. — Sets for Mathematics | 230 |
Grillet P.A. — Abstract Algebra | 110, 516, 552 |
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains | 3 O—1.3 |
Halmos P.R. — Hilbert Space Problem Book | 170, 177 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 201 |
Halmos P.R., Givant S. — Logic as Algebra | 67, 74, 118 |
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 22 |
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 29 |
Walker R.J. — Algebraic Curves | 125—127 |
Ash R.B. — Abstract algebra: the basic graduate year | 2.2, 8.1 |
Engel K. — Sperner theory | 6 |
Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 19 |
Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 9 |
Ueno K. — An Introduction to Algebraic Geometry (Translations of Mathematical Monographs) | 98, 214, 223 |
Michor P.W. — Topics in Differential Geometry | 54 |
Arveson W. — A Short Course on Spectral Theory | 21 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 58 |
Chou S.-C. — Mechanical Geometry Theorem Proving | 23 |
Zaharopol R. — Invariant Probabilities of Markov-Feller Operators and Their Supports | 30 |
Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 64, 80 |
Hobby D., McKenzie R. — The Structure of Finite Algebras | 32 |
Lam T.Y. — A first course in noncommutative ring theory | 3, 19 |
Lau D. — Function Algebras on Finite Sets | 58 |
Van Oystaeyen F.M. — Prime Spectra in Non-Communicative Algebra | 4 |
Everest G., Ward T. — An Introduction to Number Theory | 84 |
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 2 |
Higson N., Roe J. — Analytic K-Homology | 17 |
Lindner M. — Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method | 2 |
Hensley D. — Continued Fractions | 28, 29 |
Ellis G. — Rings and Fields | 19 |
Bauer F.L. — Decrypted Secrets: Methods and Maxims of Cryptology | 493 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 43 |
Hrbacek K., Jech T. — Introduction to Set Theory | 202 |
Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications | 4, 62 |
Shoup V.A. — Computational Introduction to Number Theory and Algebra | 4, 231 |
Krantz S.G. — Function Theory of Several Complex Variables | 275 |
Jetter K. (Ed), Schaback R. (Ed) — Topics in Multivariate Approximation and Interpolation | 212 |
Corfield D. — Towards a Philosophy of Real Mathematics | 93, 189, 271 |
Kato K., Kurokawa N., Saito T. — Number Theory I. Fermat's Dream | 115 |
Aliprantis Ch.D. — Positive Operators | 23 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | xiii, 2, 4, 7, 12, 13, 16, 18, 19, 29—34, 49, 50, 56, 57, 69, 86, 93, 97, 98, 101, 107, 108 |
Swallow J. — Exploratory Galois Theory | 11 |
Alaca S., Williams K.S. — Introductory Algebraic Number Theory | 8 |
Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | I 2, IV 26 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 822—823, 1150—1151, 1153 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 61, 157 |
James G., Liebeck M.W. — Representations and Characters of Groups | 256 |
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 172, 173 |
Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 236 |
Kurosh A.G. — Theory of Groups (vol 1) | 105 |
Koblitz N. — p-adic numbers, p-adic analysis, and zeta-functions | 63 |
Cohen H.A. — A Course in Computational Algebraic Number Theory | 182 |
Jones J.A., Jones J.M. — Elementary Number Theory | 234 |
Franklin J., Daoud A. — Introduction to Proofs in Mathematics | 65 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 317 |
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 11, 102, 103, 201 |
Rudin W. — Functional analysis | 263 |
Lang S. — Undergraduate Algebra | 6, 87 |
Neukrich J. — Algebraic number theory | 16 |
Petrich M. — Rings and Semigroups | 6 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 170 |
Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 33, 34, 170, 171, 188 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 822—823, 1150—1151, 1153 |
Lang S. — Real Analysis | 53 |
Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 2, 92 |
Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 99 |
Rudin W. — Real and complex analysis | 175, 305, 362 |
Borceux F., Janelidze G. — Galois Theories | 1, 15, 66 |
Gruenberg K.W. — Linear Geometry | 152 |
Borel A. — Linear algebraic groups | AG.3.2, AG.3.3, AG.3.4 |
Monk J.D. — Mathematical Logic | 146, 223 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 822—823, 1150—1151, 1153 |
Borceux F. — Handbook of Categorical Algebra 3 | 168 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 14 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 309 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 65, 645, 669, 670, 673, 674, 680 |
Ãîëóáü Í.Ã. — Èñêóññòâî ïðîãðàììèðîâàíèÿ íà Àññåìáëåðå. Ëåêöèè è óïðàæíåíèÿ | 36 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 17.13 |
Sakai S. — C*-algebras and W*-algebras | 24 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 237, 238, 300 |
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory | II.92 |
Guggenheimer H.W. — Differential Geometry | 113 |
Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory | 9 |
Ruskey F. — Combinatorial generation | 20 |
Koblitz N., Wu Y.-H., Menezes A.J. — Algebraic Aspects of Cryptography | 65 |
Bollobás B. — Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability | 16, 36 |
Beachy J.A. — Abstract Algebra II | 10 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 26, 121 |
Froberg R. — An Introduction to Grobner Bases | 10 |
Marcus M. — Finite dimensional multilinear algebra. Part I | 160 |
Edwards H.M. — Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory | 144 |
Hu S.-T. — Elements of real analysis | 211 |
McCoy N.H. — Rings and ideals | 52 |
Silvester J.R. — Introduction to Algebraic K-Theory | 18 |
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | see “Measurements”, “Perfect gas”, “Preparations” |
Murota K. — Discrete convex analysis | 107 |
Stetter H. J. — Numerical polynomial algebra | 14 |
Draxl P.K. — Skew fields | 8 |
Artin E., Nesbitt C.J., Thrall R.M. — Rings with Minimum Condition | 2 |
von Neumann J. — Continuous Geometry | 63, 65, 250, 251 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 223, 290—293, 296, 310, 587 |
Aigner M. — Combinatorial Theory | 33 |
Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 82-84 |
Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 64, 80 |
Petrich M. — Inverse semigroups | 23 |
Barwise J. (ed.) — Handbook of Mathematical Logic | 13, 355 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 132, 3, 138, 379 |
Jacobson N. — Lectures in Abstract Algebra, Vol. 1 | 65 |
Nastasescu C., Oystaeyen F.V. — Dimensions of ring theory | 18, 38 |
Bóna M. — A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory | 375 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 9 |
Nagata M. — Field Theory | 26 |
Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 219 |
Butcher J. — Numerical Methods for Ordinary Differential Equations | 283 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 93 ff. |
Jonsson B. — Topics in Universal Algebra | 104, 158 |
Price J.F. — Lie groups and compact groups | 106 |
Rosenfeld B. — Geometry of Lie Groups | 3 |
Conway J.B. — A Course in Functional Analysis | 195 |
Herzog B. — Kodaira-Spencer Maps in Local Algebra | 9 |
Saxe K. — Beginning functional analysis | 165 |
Birknoff — Lattice Theory | 21, 34, 78, 124, 140, 159, 200, 222 |
Koblitz N., Menezes A.J. (Contributor), Wu Y.-H. (Contributor) — Algebraic Aspects of Cryptography | 65 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 55 |
Lang S. — Introduction to Algebraic and Abelian Functions | 149 |
Jacobson N. — Lectures in Abstract Algebra, Vol. 3 | 7 |
Andrews G.E. — Number Theory | see "Integral ideal" |
Korevaar J. — Tauberian Theory: A Century of Developments | 237 |
Curtis M.L. — Abstract Linear Algebra | 82 |
Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 403—405 |
Larsen R. — Banach algebras: An Introduction | 4 |
Bell E.T. — The Development of Mathematics | 218, 246, 260, 265, 555 |
Moh T.T. — Algebra | 118, 144 |
Ya Helemskii A., West A. — Banach and locally convex algebras | 81 |
Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 197 |
Wakimoto M. — Infinite-Dimensional Lie Algebras | 2 |
Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 443 |
Greub W.H. — Linear Algebra | 143 |
Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 5ff, 53ff, see also "Class", "Norm" |
Bhaskara Rao K.P.S. — Theory of generalized inverses over commutative rings | 2 |
Naimark M.A., Stern A.I. — Theory of Group Representations | 81 |
Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | (see Prime, maximal) |
Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 3, 182, 425, 426, 429433, 455, 465, 467 |
Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 377 |
Goffman C., Pedrick G. — First course in functional analysis | 254 |
Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 273, 293 |
Kuratowski K. — Topology. Volume II | 33 |
Hermann R. — Differential geometry and the calculus of variations | 175 |
Lindenstrauss J., Tzafriri L. — Classical Banach Spaces I, II | see "Banach lattices" |
Hu S.-T. — Introduction to contemporary mathematics | 115, 123 |
Pilz G. — Near-rings: the theory and its applications | 15, 16 |
Hagen R., Roch S., Silbermann B. — Spectral Theory of Approximation Methods for Convolution Equations | 3 |
McCoy N.H. — The theory of rings | 21 |
Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 2 |
Rosenfeld A. — An introduction to algebraic structures | 91, 214 |
Aliprantis C. — Principles of real analysis | 247 |
Goldstein L.J. — Analytic Number Theory | 12ff |
Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 65, 133, 138, 166ff., 522 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 8, 232 |
Knus M.-A. — Quadratic and hermitian forms over rings | 85 |
de Graaf W.A. — Lie Algebras: Theory and Algorithms | 1 |
Cohn P.M. — Lie Groups | 128 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 20, 110 |
Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 80, 400 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 309 |
Dym H., McKean H.P. — Fourier Series and Integrals | 41 |
Jategaonkar A.V. — Left Principal Ideal Rings | 2 |
Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 6 |
Mukherjea A., Tserpes N.A. — Measures on Topological Semigroups: Convolution Products and Random Walks | 2 |
Bruck R.H. — A survey of binary systems | 25, 44 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 2.3. 24, 6.4. 89 |
Greub W.H. — Linear Algebra | 143 |
Conway J.H., Smith D.A. — On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry | 4, 58, 99 |
Littlewood D.E. — The Skeleton Key of Mathematics | 53 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 293, 294 |
Krantz S.G. — Function theory of several complex variables | 275 |
Bachman G. — Elements of Abstract Harmonic Analysis | 48 |
Howie J.M. — Fields and Galois Theory | 6 |
Moskowitz M.A. — Adventures in mathematics | 56 |
Moh T.T. — Algebra | 118, 144 |
Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 160, 567 |
Kunen K. — Set theory | 76 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 296 |
Lane S.M. — Mathematics, form and function | 210, 419 |
Boerner H. — Representations of Groups | 55 |
Van Neerven J. — The Adjoint Of A Semigroup Of Linear Operators | 8.1 |
Purser M. — Introduction to error-correcting codes | 31 |
Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 377 |
Gruenberg K.W., Weir A.J. — Linear Geometry | 152 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 512 |
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 10 |
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms | 29, 498 |
Curry H.B. — Foundations of Mathematical Logic | 140 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 68 |
Lang S. — Linear Algebra | 283 |
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics | 287—289, 298 |
Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 441 |
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis | 32 |
Zeidler E. — Oxford User's Guide to Mathematics | 670, 718, 1192, 1193 |
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 684, 700, 706 |
Hodge W.V.D., Pedoe D. — Methods of Algebraic Geometry: Volume 1 | 11 |
Northcott D.G. — Ideal theory | 4 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 793 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 108 |
Treves F. — Topological Vector Spaces, Distributions And Kernels | 26 |
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 205 |
Childs L. — A concrete introduction to higher algebra | 322 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 7, 108, 601 |
Behrends E. — LP-Structure in Real Banach Spaces | 47 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 41 |
Maclane S. — Homology | 10 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 314, 317 |
Gill A. — Applied Algebra for the Computer Sciences | 292 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 146, 164, 191 |
Curry H.B. — Foundations of mathematical logic | 140 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 20, 110 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 8, 232 |
Mac Lane S. — Mathematics: Form and Function | 210, 419 |
Yaglom A.M., Yaglom I.M. — Probability and Information | 332, 376 |
Koblitz N. — P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed. (Graduate Texts in Mathematics) | 63 |
Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 684, 700, 706 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 132—133, 138, 379 |
Kline M. — Mathematical thought from ancient to modern times | 822, 823, 1150, 1151, 1153 |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 126[4.4.6], 469, 484[15.10.2] |
Truss J.K. — Foundations of Mathematical Analysis | 58, 140, 279, 328 |
Proskuryakov I.V. — Problems in Linear Algebra | 273 |
Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 160, 567 |
Lindstrum A.O. — Abstract algebra | 128 |
Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 202 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 14, 151 |
Truss J. — Foundations of mathematical analysis | 58, 140, 279, 328 |
J. K. Truss — Foundations of mathematical analysis MCet | 58, 140, 279, 328 |