Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pommaret J.F. — Differential Galois Theory
Pommaret J.F. — Differential Galois Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Differential Galois Theory

Автор: Pommaret J.F.

Язык: en

Рубрика: Математика/Алгебра/Дифференциальная алгебра/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 760

Добавлена в каталог: 17.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abelian group      1B 1.3
Absolute component      1B 7.8
Absolute differential variety      1C 5.13
Absolute variety      1C 1.13
Abstract ring      1B 4.7
Action of a group      1B 1.29
Acyclicity      1A 3.21
Adjunction      1B 5.5
Admissible extension      3 1.8
Admissible homomorphism      3 1.9
Admissible morphism      2A 2.44
Affine bundle      1A 1.10
Affine space      1C 1.2
Algebra      1B 2.10
Algebraic bracket      2A 1.18
Algebraic element      1B 5.1
Algebraic extension      1B 5.2
Algebraic group      1C 2.1
Algebraic independence      1B 4.14
Algebraic pseudogroup      3 2.6
Algebraic set      1C 1.2
Algebraically closed      1B 5.17
Alternating group      1B 1.17
Antipode morphism      1C 2.3
Artinian ring      1B 3.17
Ascending chain condition      1B 3.1
Associated bundle      2A 2.34
Associated prime ideal      1B 2.31
Associated vector bundle      2A 2.58
Augmentation morphism      1C 2.3
Automorphic system      1B 8.1—2B 1.28
Automorphicextension      1B 8.48—64
Backlund problem      4B 1.1
Base manifold      1A 1.2
Basic open set      1C 1.12
Basis      1B 2.16
Bianchi identity      4A 4.15
Birational isomorphism      1C 1.26
Burgers example      4B 1.6
Center      1B 1.11
centralizer      1B 1.11
CHARACTER      1A 3.26
Cohomology $(\delta-)$      1A 3.21
Comaximal ideals      1B 3.25
Commutative ring      1B 2.3
Comorphism      1C 1.18
Composite field      1B 4.2
Composite ring      1B 4.1
Composition factor      1B 1.19
Composition law      1B 1.1
Conjugate component      1B 7.15
Connection      4A 4.1
Connection form      4A 4.6
Contact structure      4D 1.4
Contraction of an ideal      1B 7.1
Covariant derivative      4A 4.5
Curvature      4A 4.6
Cyclic group      1B 1.12
Degree of an extension      1B 5.1
Derivation      3 1.1
Derivative operator      1C 3.3
Descending chain condition      1B 3.16
Diagonal      1B 1.39
Diagonal morphism      1C 2.3
Differential algebraic set      1C 5.1
Differential automorphic extension      3 2.44—52 3.1
Differential basis      1C 4.25
Differential bracket      2A 1.19
Differential closure      1C 5.18
Differential composite field      1C 3.26
Differential derivation      3 1.3
Differential extension      1C 3.5
Differential field of definition      1C 4.28
Differential homomorphism      1C 3.6
Differential ideal      1C 3.1
Differential indeterminate      1C 3.19
Differential invariant      2A 2.28
Differential rational map      1C 5.18
Differential ring      1C 3.1
Differential specialization      1C 5.12
Differential transcendence basis      1C 3.43
Differential variety      1C 5.4
Differential Zarisky topology      1C 5.2
Dihedral group      1B 1.12
Dimension of an ideal      1B 3.22
Direct sum of rings      1B 3.28
Dolbeaut sequence      4A 7.1
Domain      1A 1.3
Dominant morphism      1C 1.18
Effective action      1B 1.31—2B 1.19
Epimorphism      1B 1.6
Equivalence of sections      1A 2.1—2B 2.17
Equivariant map      1B 1.35
Evaluation homomorphism      1B 5.2
Exact sequence      1A 1.25
Extension of an ideal      1B 7.1
Exterior covariant derivative      1A 4.13
Factor group      1B 1.10
Fibered manifold      1A 1.1
Fibered product      1A 1.19
Fibered submanifold      1A 1.15
Field      1B 2.5
Field of definition      1B 7.9
Field of invariants      3 2.28—48
Field of quotients      1B 2.40
Finite extension      1B 5.1
Finite group      1B 1.13
Finite lie equations      2A 2.1
Finite transformations      2A 2.5
Finite type      1A 3.21
First non-linear Spencer sequence      4A 5.5
Flat connection      4A 4.14
Flat map      2A 1.16
Flat pseudogroup      3 2.16
Formal compatibility      1A 3.9
Formal derivative      1A 3.1
Formal exactness      1A 4.1
Formal integrability      1A 3.19
Formal invariance      1B 8.17
Formal lie derivative      2A 2.55
Formal transitivity      1A 3.10
Formal translation      2B 1.3
Formally integrable morphism      2B 3.31
Four group      1B 1.17
Free action      1B 1.31—2B 1.19
Free composite field      1B 4.50
Free composite ring      1B 4.5 3
Full ring of quotients      1B 2.40
Fundamental form      2A 1.3
Fundamental isomorphism      3 2.52
Fundamental Theorem of Galois Theory      1B 5.38
Galois cohomology      1B 6.4
Galois correspondence      1B 5.36
Galois extension      1B 5.22
Galois group      1B 5.26
Galois pseudogroup      2 2.44
General automorphic system      2B 1.58
General equation      1B 5.33
General lie equations      2A 3.2
General section      2A 3.1
Generalized Backlund problem      4B 2.1
Generic action      2B 1.55
Generic zero      1B 5.11
Global section      1A 1.3
Ground field      1B 2.7
Group      1B 1.2
Hamilton-Jacobi equation      4D 3.7
Helmholtz postulate      4D 5.2
Hilbert basis theorem      IB 3.2
Hilbert polynomials      1C 5.14
Hilbert theorem 90      IB 6.11
Homomorphism      IB 1.4
Hopfring      1C 2.3
Horizontal vector field      4A 4.12
Ideal      IB 2.14
identity map      IB 1-39
Imbedded prime ideal      1B 2.37
Index of a subgroup      IB 1.7
Infinitisimal lie equations      2A 2.23
Infinitisimal transformations      2A 2.19
Initial      1C 3.28
Integrability conditions      2B 1.63
Integral closure      IB 4.11
Integral dependence      IB 7.7
Integral domain      IB 2.4
Integral ring      IB 4.10
Inverse      IB 1.2
Involution      1A 3.21
Irreducible system      IB 8.27
Irredundant intersection      1B 2.32
Isolated isomorphism      IB 8.69-32-69
Isolated prime ideal      IB 2.37
Isomorphism      IB 1.5
Isotropy group      IB 1.30-2A2.46
Jacobi identity      2A 1.18
Jacobson radical      IB 2.25
Janet bundles      1A 3.29
Janet sequence      1A 4.3
Jet of section      1A2.2
Kernel      1A 1.16
Korteweg-de Vries example      4B 1.10
Left coset      1B 1.7
Lie derivative      2A 2.57
Lie groupoid      2A 2.2
Lie operator      2A 2.50
Lie-Bianchi example      4B 1.2
Linear disjointness      1B 4.4
Linear independence      1B 4.4
Local ring      1B 2.28
Local section      1A 1.3
Maurer — Cartan form      4A 5.8
Maximal ideal      1B 2.18
Maximum condition      1B 3.1
Minimal condition      1B 3.16
Model vector bundle      1A 1.11
Modular ideal      1B 3.31
Module      1B 2.9
Monoid      1B 1.1
Monomorphism      1B 1.6
Multiplicatively stable      1B 2.18
Natural bundle      2A 2.35
Natural morphism      2A 2.43
Natural system      2A 3.9
Nilpotent element      1B 2.4
Nilradical      1B 2.15
Noether normalization lemma      1B 4.19
Noetherian ring      1B 3.1
Non-linear operator      1A 3.2
Non-linear system      1A 3.6
Normal bundle      1A 1.24
Normal composition      1B 1.15
Normal factor      1B 1.15
Normal subgroup      1B 1.8
Normal subpseudogroup      3 2.95
Normal tower      1B 1.15
normalizer      1B 1.11
Orbit      1B 1.33
Order of a group      1B 1.7
Order of a system      1A 3.6
Painleve transcendental function      4B 5.4
Patching      1A 1.5
Perfect ideal      1B 2.15
Point      1C 1.1
Primary ideal      1B 2.31
Prime ideal      1B 2.18
Primitive element      1B 5.7
Principal homogeneous space      1B 8.64
Principal ideal      1B 2.16
Product of ideals      1B 2.16
Projectable vector field      2A 1.4
Projective algebraic set      1C 1.27
Prolongation of a symbol      1A 3.13
Prolongation of a system      1A 3.8
Quadrature      2B 4.10
Quotient ideal      1B 2.17
Radical      1B 2.15
Ramification point      1B 8.11
Rational map      1C 1.25
Reciprocal image      1A 1.20
Reciprocal lie algebras      3 2.77
Reduced ring      1B 2.15
refinement      1B 1.16
Regular extension      1B 4.46
Residue field      1B 2.28
Resolvent system      4B 2.4
Riccati equation      2B 4.12
Riemann structure      4A 8.2
Ring of constants      1C 3.1—3 1.10
Ring of quotients      1B 2.40
Ring with derivations      3 1.4
Saturate system      2B 1.43
Second non-linear Spencer sequence      4A 6.3
Semi-invariant      1C 2.13
Separant      1C 3.28
Sharp map      2A 1.26
Similar pseudogroup      2A 3.7
Simple point      1C 1.30
Simply transitive action      1B 1.31—2B 1.19
Sine-Gordon example      4B 1.5
Singular point      1C 1.30
Smooth variety      1C 1.30
Solution      1A 3.7
Solvable by radicals      1B 5.41
Solvable group      1B 1.24
Source      1A 2.2
Source projection      1B 1.36
Special automorphic system      2B 1.65
Special equation      1B 8.2
Special section      2A 3.1
Spencer operator      1A 3.32
Splitting field      1B 5.15
Stabilizer      1B 1.34
Stable ideal      3 1.12
Stable morphism      2B 3.56
Structure constants      2A 3.17
Sum of ideals      1B 2.16
Superalgebra      4E 2.5
Support      1C 1.12
Symbol      1A 3.12
Symplectic structure      4D 1.3
Tangent map      1A 1.14
TARGET      1B 1.36
Tensor product of rings      1B 4.24
Tensor product of vector bundles      1A 1.10
Torsion      4A 8.1
Total manifold      1A 1.2
Transcendental element      1B 5.1
Transendence basis      1B 4.15
Transendence degree      1B 4.17
Transitive action      1B 1.31—2B 1.19
Transporter      1B 1.34
Truncated lie algebra      4E 2.1
Unimodular structure      4D 1.1
Unit element      1B 1.1
Unitary ring      1B 2.2
Vector bundle      1A 1.8
Vector space      1B 2.7
Vertical bundle      1A 1.22
Vertical sequence      1A 1.25
Zarisky topology      1C 1.9
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте