Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nagel R. — One-parameter semigroups of positive operators | 136 |
Guillemin V., Pollack A. — Differential topology | 8, 11 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 139 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 3, 65 |
Bartle R.G. — The Elements of Real Analysis | 235 |
Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 15, 157 |
Apostol T.M. — Calculus (vol 1) | 174, 514 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 388 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 80 |
Shorack G.R. — Probability for statisticians | 67, 78 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 106.C |
Evans L.C. — Partial Differential Equations | 291 |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 54, 469 |
Acheson David — From calculus to chaos | 12 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 72 |
Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 110, 123, 194 |
Gray R.M., Davisson L.D. — Introduction to statistical signal processing | 131, 162 |
Olver P.J. — Equivalence, Invariants and Symmetry | 23, 114, 116, 128, 212, 277, 436 |
Lee J.M. — Differential and Physical Geometry | 18, 623 |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 309 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 426 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 28 |
Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 31, 35 |
Rao C.R., Toutenberg H. — Linear models: least squares and alternatives | 295 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 526 |
Silverman J.H. — The arithmetic of elliptic curves | 120 |
Roberts A.W., Varberg D.E. — Convex Functions | 66 |
Rudin W. — Real and Complex Analysis | 199 |
Abell M.L., Braselton J.P. — Mathematica by Example | 112 |
Jacobson N. — Structure and Representations of Jordan Algebras | 215 |
Conway J.B. — Functions of One Complex Variable | 34 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 82, 186 |
Takesaki M. — Theory of Operator Algebras II | 115 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 18 |
Maeder R.E. — Computer science with mathematica | 359 |
Bird J. — Engineering Mathematics | 389 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 119, 160, 169 |
Levine I.N. — Molecular Spectroscopy | 20—21 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 33 |
Freitaq — Several Complex Variables. Local Theory | 4 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 419 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 143 |
Hand L.N., Finch J.D. — Analytical Mechanics | 6 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 29, 203, 205 |
Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 89 |
Hamilton J.D. — Time Series Analysis | 712 |
Knopp K. — Elements of the Theory of Functions | 95 |
Braselton J.P. — Maple by Example | 110 |
Estep D.J. — Practical Analysis in One Variable | 264 |
Ash R.B. — Abstract algebra: the basic graduate year | 1.3, 3.1 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 125, 339 |
Ruiz J.M. — The basic theory of power series | 9 |
Strauss W.A. — Partial Differential Equations: An Introduction | 4, 7, 386 |
Falconer K.J. — Techniques in Fractal Geometry | 64 |
Krantz S.G. — Function Theory of Several Complex Variables | 76 |
Powers D.L. — Boundary Value Problems: And Partial Differential Equations | 232 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 57, 73, 98 |
Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 44, 80, 100 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 18 |
Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 39 |
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 64 |
Zelikin M.I. — Control Theory and Optimization, Vol. 1 | 191 |
Pugh C.C. — Real Mathematical Analysis | 274 |
Lange K. — Optimization | 54 |
Montiel S., Ros A. — Curves and Surfaces | 48 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 23 |
Shankar R. — Basic Training In Mathematics | 3 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 376 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 51 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 51 |
Devaney R.L. — An introduction to chaotic dynamical systems | 10 |
Greiner W. — Classical mechanics. Point particles and relativity | 73, 180 |
Khuri A.I. — Advanced calculus with applications in statistics | 97, 116 |
Cohn P.M. — Algebraic numbers and algebraic functions | 136 |
Spivak M. — Calculus | 160 ff. |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 137 |
Poeschel J. — Inverse Spectral Theory | 130 |
Arvo J. — Graphics gems (vol. 2) | 184 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 80, 386 |
Rudin W. — Functional analysis | 260 |
Lang S.A. — Undergraduate Analysis | 67, 282, 396, 471 |
Sinha S.M. — Mathematical Programming: Theory and Methods | 24 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 88 |
Antman S.S. — Nonlinear Problems of Elasticity | 380 |
Boas R.P. — A Primer of Real Functions | 141 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 179, 552 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 376 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 433—434 |
Elberly D.H., Shoemake K. — Game Physics | 114, 704, 705—706 |
Ito K. — Encyclopedic Dictionary of Mathematics | 106.C |
Burn R.P. — Numbers and Functions: Steps to Analysis | 8.18, 8.33, 8H |
Hale J.K., Kocak H. — Dynamics and Bifurcations | 540 |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 271 |
Rudin W. — Real and complex analysis | 197 |
Carmo M.P. — Differential geometry of curves and surfaces | 91 (Ex. 24), 126, 129 |
Barton J.J., Nackman L.R. — Scientific and engineering C++ | 590 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 228 |
Greenberg M.D. — Advanced engineering mathematics | 625, 655 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 174, 514 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 376 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 134 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 252, 331 |
Strichartz R.S. — The way of analysis | 168, 428 |
Morgan F. — Riemannian geometry, a beginners guide | 17 |
Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 265 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 89 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 184 |
Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics | 34 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 10 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 214 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 35, 38 |
Aoki K. — Nonlinear dynamics and chaos in semiconductors | 187 |
Munkres J.R. — Analysis on manifolds | 56 |
Grimmett G., Stirzaker D. — Probability and Random Processes | 538 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 651 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 179 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 312, 3, 319, 323, 330, 4, 349, 51, 356, 358, 396—7 |
Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling | 220, 315, 317, 318, 319, 337, 345 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 492 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 4, 18 |
Kuttler K. — Calculus, Applications and Theory | 481 |
Olver P.J., Shakiban C. — Applied linear. algebra | 608 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 184 |
Krantz S.G. — Handbook of Real Variables | 74 |
Kreyszig E. — Advanced engineering mathematics | 401 |
Hormander L. — The analysis of linear partial differential operators I | 8 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 71 |
Berezin F.A., Shubin M.A. — The Schroedinger equation | 231 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 35, 36 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 138 |
Bluman G.W. — Problem Book for First Year Calculus | (1.2; 11.25; III.1; VIII.2.1, 2.7), [VII.11; VIII.2.20-2.24, 3.35] |
Straumann N. — General relativity and relativistic astrophysics | 10 |
Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 10 |
Bonar D.D., Khoury M.J. — Real Infinite Series | 59 |
Marsden J., Weinstein A. — Calculus unlimited | 110, 191 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 81—82 |
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 79 |
Paeth A.W. (ed.) — Graphics gems (volume 5) | III.84 |
Adler S.L. — Quantum theory as emergent phenomenon | (see Leibniz rule) |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 23 |
Gentzen G. — The collected papers of Gerhard Gentzen | 180 seq. |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 10 |
Farin G. — Curves and surfaces for computer aided geometric design | 97 |
Taylor P. — Text-to-Speech Synthesis | 546 |
Rektorys K. — Survey of applicable mathematics | 420 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 55 |
Lee J.M. — Differential and physical geometry | 18, 623 |
de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 252, 262 |
Browder A. — Mathematical Analysis: An Introduction | 82, 184 |
Huggins E.R. — Physics 2000 | Cal-1—25 |
Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 339 |
Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 43 |
Marks R.J.II. — The Joy of Fourier | 614 |
Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 62 |
Rall L.B. — Automatic Differentiation: Techniques and Applications | 11 |
Cohn P.M. — Algebraic Numbers and Algebraic Functions | 136 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 554 |
Enderton H.B. — A Mathematical Introduction to Logic | 180 |
Pilz G. — Near-rings: the theory and its applications | 245 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 49 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 309 |
Aliprantis C. — Principles of real analysis | 350 |
Davis H. F., Snider A. D. — Introduction to Vector Analysis | 80, 287 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 172 |
Fink K. — A brief history of mathematics | 52, 55 |
Greub W.H. — Linear Algebra | 341 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 203, 207 |
Marsden J., Weinstein A. — Calculus 1 | 112 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 62, 239 |
Krantz S.G. — Function theory of several complex variables | 76 |
Carroll R.W. — Mathematical physics | 354 |
Lang S. — Undergraduate analysis | 67, 282, 396, 471 |
Kuttler K.L. — Modern Analysis | 64 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 328 |
Silverman J. — The arithmetic of dynamical systems | 18, 360 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 420 |
Hsiung C.-C. — A first course in differential geometry | 20 |
Loomis L.H., Sternberg S. — Advanced calculus | 153 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 116 |
Bickel P., Doksum K. — Mathematical statistics | 517 |
Lane S.M. — Mathematics, form and function | 154, 168 |
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science | 234 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 17, 178 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 23, 50 |
Kuttler K. — Notes for Partial Differrential Equations | 51 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 45 |
Bichteler K. — Integration Theory | 22.9 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 87 |
Ponstein J. — Nonstandart Analysis | 115 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 29, 203, 205 |
Bluman G.W. — Similarity Methods for Differential Equations | 158 |
Zeidler E. — Oxford User's Guide to Mathematics | 135, 264, 283, 284, 294 |
Schott J.R. — Matrix Analysis for Statistics | 324, 327 |
Collatz L. — Functional analysis and numerical mathematics | 271 |
Hamilton J.D. — Time Series Analysis | 712 |
Hadlock C.R. — Field theory and its classical problems | 56, 247 |
Hu S., Papageorgiou N.S. — Handbook of Multivalued Analysis, Volume II: Applications | 865 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 55—57 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 32 |
United States NAVY — Mathematics, pre-calculus and introduction to probability (Navy course) | 5-19—5-21, 5-35 |
Revuz D., Yor M. — Continuous martingales and Brownian motion | 6 |
Yamamuro S. — Differential Calculus in Topological Linear Spaces | 1.2 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 19, 32 |
Stillwell J. — Mathematics and its history | 107 |
Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 22, 117, 126, 169, 185, 218, 227, 236, 350 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 55 |
Kleinert H. — Gauge fields in condensed matter (part 2) | 18, 19 |
Santalo L., Kac M. — Integral geometry and geometric probability | 177 |
Cheney W. — Analysis for Applied Mathematics | 121 |
Gill A. — Applied Algebra for the Computer Sciences | 136 |
Ichimaru S. — Statistical Plasma Physics, Volume I: Basic Principles (Frontiers in Physics, Vol 87) (v. 1) | 360 |
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation | 24 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 6 |
Mac Lane S. — Mathematics: Form and Function | 154, 168 |
BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 465 |
Bhatia R. — Matrix Analysis | 311 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 312—313, 319, 323, 330—331, 349—351, 356, 358, 396—397 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 433—434 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 433—434 |
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 51 |
Kline M. — Mathematical thought from ancient to modern times | 376 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 211 |
Truss J.K. — Foundations of Mathematical Analysis | 156 |
Voit E. — Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists | 74, 138, 252, 257, 282, 393, 448 |
Truss J. — Foundations of mathematical analysis | 156 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 87, 91, 93 |
J. K. Truss — Foundations of mathematical analysis MCet | 156 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 210, 217 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 210, 217 |