Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ash R.B. — Real Variables with Basic Metric Space Topology
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Real Variables with Basic Metric Space Topology
Àâòîð: Ash R.B.
Àííîòàöèÿ: This is a text for a first course in real variables. The subject matter is fundamental for more advanced mathematical work, specifically in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. In addition, many students of engineering, physics, and economics find that they need to know real analysis in order to cope with the professional literature in their fields. Standard mathematical writing, with its emphasis on formalism and abstraction, tends to create barriers to learning and focus on minor technical details at the expense of intuition. On the other hand, a certain amount of abstraction is unavoidable if one is to give a sound and coherent presentation. This book attempts to strike a balance that will reach the widest audience possible without sacrificing precision.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 213
Äîáàâëåíà â êàòàëîã: 28.03.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"And" connective 15
"Implies" connective 15—16
"Not" connective 15
"Or" connective 15
set 148
set 148
Abel's theorem 55
Algebra of functions 137
Applications: of compactness 33—37
Applications: of the Mean Value Theorem 86—91
Applications: of the Weierstrass M-test 125—129
Arzela — Ascoli theorem 132—133
Bake Category Theorem 144—149
Bake Category Theorem, proof of 145—146
Ball 11
Bolzano — Weierstrass theorem 34—35
Bolzano — Weierstrass Theorem, corollary 35—36
Boundary point 23 42
Bounded function 65 125
Bounded sequence 34
Bounded sets 29—35 161—162
Bounded variation, functions of 106—111
Calculus, Fundamental Theorem of 104—105
Cantor diagonal process 8
Cantor set 76—80
Cantor's Nested, Set Property 29 164—165
Category 1 and category 2 145
Cauchy product of power series 139
Cauchy sequence 24 40—41 124 164
Cauchy — Schwarz inequality 52
Cauchy — Schwarz inequality, for integrals 115
Cauchy — Schwarz inequality, for sums 52
Chain rule 81—82
Change of variable formula 112
Closed ball 12
Closed sets 12—13
Closed sets, continuity and 61—62
Closed sets, relation between open sets and 13—14
Closed sets, unions and intersection of 25—28
Closure 22
Cluster point 21
Co-finite set 23
Codomain 57
Compact set 30
Compactness 28—37 161—164
Compactness, and closed, bounded sets 30
Compactness, and continuity 64—70
Compactness, applications of 33—37
Compactness, Bolzano — Weierstrass Theorem 34—35
Compactness, criteria for 162
Compactness, definition 30
Compactness, Heine — Borel Theorem 31—32 35 130 164
Compactness, nested set property 29
Complement 2 3 6
Complete metric space 41
Completeness, and least upper bounds 37—42
Composition of functions 59
Connectedness 150—152
Continuity 57—80
Continuity, and compactness 64—70
Continuity, definition 57
Continuity, discontinuities, types of 70—76
Continuity, epsilon-delta approach 57—58
Continuity, global vs. local concept of 59 67
Continuity, semicontinuous functions 152—158
Continuity, uniform 66—70
Continuous functions 57ff
Contradiction, proof by 16—17
Contrapositive 17
Convergence see also “Pointwise convergence; Uniform convergence” 10—15
Convergence pointwise 117—120
Convergence, of power series 52—55
Convergence, radius of 54
Convergent subsequence 33—34
Countable sets 7—10
Countably infinite sets 7—10
De Morgan laws 5 6 27
Decreasing function 74 85
Decreasing sequence 41
Deleted open ball 21
Dense set 68—69 145—146
Derivative 81ff
Diagonal process 8 46 131 163
Differentiable function 81ff
Differentiation 81—92
Differentiation, definition 81—83
Differentiation, Generalized Mean Value Theorem 85—86
Differentiation, Mean Value Theorem 83—85
Differentiation, Mean Value Theorem, applications of 86—91
Dini's theorem 124—125
Direct image 62—63
Disconnected sets 150—151
Discontinuities, infinite 71
Discontinuities, jump 71
Discontinuities, nonsimple 73
Discontinuities, of the first kind 71—72
Discontinuities, of the second kind 73—74
Discontinuities, point 71
Discontinuities, removable 71
Discontinuities, simple 71
Discontinuities, types of 70—76
Disjoint sets 5—6 151
Distance 10—15
Distance function 10
Distance, from a point to a set 79
Distributive law for sets 2
Domain 57
Empty set 5
Epsilon-delta characterization 57—58 71 73 76
Equicontinuity, and Arzela — Ascoli Theorem 130—133
Equicontinuous family of functions 131
Euclidean metric 10 52
Euclidean p-space 11
Euclidean plane 2
Eventually (ev) 49
Everywhere continuous, nowhere differentiable function 126—129
Existential quantifier 18
Extended real numbers 35
Extension: of a bounced continuous function 143
Extension: of a uniformly continuous function 69
Extension: Tietze Extension Theorem 143
Finite sets 7
Function 33
Function, bounded 65 125
Function, continuous 57ff
Function, decreasing 74 85
Function, differentiable 81ff
Function, everywhere continuous and nowhere differentiable 126—129
Function, increasing 74 85
Function, left-continuous 111
Function, lower semicontinuous 152
Function, monotone 74
Function, of bounded variation 106—111
Function, right-continuous 110
Function, semicontinuous 152—158
Function, uniformly continuous 66—70
Function, upper semicontinuous 152
Function, variation of a 106
Fundamental theorem of calculus 104—105
Fundamental Theorem of Calculus, intuitive view of 105
Generalized Mean Value Theorem 85—86
Global concept of continuity 59 67
Greatest lower bound 38
Heine — Borel theorem 31—32 35 130 164
Homeomorphism 144 158
Horizontal line test for uniform convergence 119—120
Image 62—63
Improper integrals 114
Increasing function 74 85
Increasing sequence 41
Induction 19
Inductive procedure 19
Infimum (inf) 38
Infinite discontinuity 71
Infinite sets 7—9
Infinitely often (i.o.) 49
Infs, properties of 39—40
integral see “Riemann — Stieltjes integral”
Integral test 115
Integration by parts 111—112
Interchange of operations 117—119 122—124
Interior of a set 145
Intermediate Value Theorem 75—76
Intermediate value theorem, for derivatives 87—88
Intersection 2 3 6
Invalid interchange of operations, examples of 117—119
Inverse image 59
Irrational numbers 147
Isolated point 21
Jump discontinuity 71
Jump function 102—103
l'Hospital's rule 81 88—90
Largest subsequential limit 46
Least upper bounds 38
Least upper bounds, and completeness 37—42
Left-continuous function 111
lim inf 46
lim sup 46
Limit concept, generalization of 45—48
Limit operations, and uniform convergence 122—125
Limit point 21
Limit, definition of 11
Limit, lower 46
Limit, upper 46
Line integrals, and Riemann — Stieltjes integral 104
Local concept of continuity 59 67
Local maximum 83
Local minimum 83
Logic 15—21
Logic, mathematical induction 18—19
Logic, negations 19—21
Logic, proof, types of 16—17
Logic, quantifiers 17—18
Logic, truth tables 15—16
Lower bound 38
Lower limit 46
Lower limit, properties of 49
Lower semicontinuous (LSC) function 152—158
Lower sum 94
Mapping 57
Mathematical induction 18—19
Maximum 65 83
Mean value theorem 81 83—85
Mean Value Theorem, applications of 86—91
Mean Value Theorem, for integrals 112—113
Mean value theorem, generalized 85—86
Metric 10
Metric space 10—13
Metric space, compactness criteria in 162—164
Minimum 65 83
Monotone function 74
Monotone sequence 41 124—125
Mutually exclusive sets 5
Negations 19—21
Neighborhood 155
Nested, Set Property 29 164—165
Nonsimple discontinuity 73
Nowhere dense sets 78 144—145 148
Open ball 11
Open sets 12
Open sets, continuity and 61—62
Open sets, relation between closed sets and 13—14
Open sets, unions and intersections of 25—28
Open subsets of R 42
Order of summation, reversal of 137—139
Partition 93
Partition, refinement of 95
Partition, size of 93
Path-connectedness 150—151
Perfect set 78
Piecewise continuous function 99
Point discontinuity 71
Pointwise bounded sequence of functions 132
Pointwise convergence 117—120
Pointwise convergence, vertical line test for 119—120
Power series, convergence of 52—55
Predicate 17—18
Preimage 59—61
Probability, and Riemann — Stieltjes integral 104
Proof: by cases 22
Proof: by contradiction 17
Proof: types of 17
Proof: via contrapositive 17
Proper subset 4
Proposition 15
Quantifiers 17—18 19
Radius of convergence 54
Ratio Test 53
Rational numbers 7 147
Real numbers 1 165
Real numbers, extended 35
Real numbers, upper/lower limits of sequences of 45—56
refinement 95
Relative topology 142
Removable discontinuity 71
Riemann integral 93ff
Riemann — Stieltjes integral 93—116
Riemann — Stieltjes integral, change of variable formula 112
Riemann — Stieltjes integral, definitions 93—96
Riemann — Stieltjes integral, evaluation formula for 103
Riemann — Stieltjes integral, existence of 96
Riemann — Stieltjes integral, improper 114
Riemann — Stieltjes integral, integration by parts 111—112
Riemann — Stieltjes integral, line integrals and 104
Riemann — Stieltjes integral, Mean Value Theorem for 112—113
Riemann — Stieltjes integral, probability and 104
Riemann — Stieltjes integral, properties of 98—106
Riemann — Stieltjes integral, upper bounds on 113
Riemann — Stieltjes sum 94
Right-continuous function 110
Rolle's theorem 83—86
Root test 53—55
Semicontinuous functions 152—158
Separated sets 151
SEQUENCE 33—34 45—52
Sequence, and limit concept 45
Sequence, bounded 34
Sequence, Cauchy 24 40—41 124 164
Sequence, convergence of 10—15
Sequence, monotone 41 124—125
Sequence, unbounded 36
Sequences of real numbers, upper and lower limits of 45—56
Set-theoretic difference 6
Sets 1ff
Sets, 148
Sets, 148
Sets, and category 2 145
Sets, bounded 29—35 161—162
Sets, Cantor 76—80
Sets, closed 12—14 25—28
Sets, closure of 21—22
Sets, co-finite 23
Sets, compact 30
Sets, complement of 2 3 6
Sets, connected 150—152
Sets, countable 7—10
Sets, dense 68 69 145—146
Sets, disjoint 5—6 151
Sets, distributive law for 2
Sets, empty 5
Ðåêëàìà