|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Vector potential
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 188 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 130.A 442.D | Mahan G.D. — Many-particle physics | 61—71, 127, 673 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 53 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 53 | Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 216, 228 | Ames W.F. — Numerical methods for Partial Differential Equations | 295—298 | Connes A. — Noncommutative geometry | VI.1 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 154 | Liboff R. — Kinetic Theory | 66, 452, 466, 475 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 441, 544 | Wesson J. — Tokamaks | 76 | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 81 | Edwards H. — Advanced Calculus: A Differential Forms Approach | 347 | Hand L.N., Finch J.D. — Analytical Mechanics | 525, 534, 538 | Ryder L.H. — Quantum Field Theory | 65,94 | Monk P. — Finite Element Methods for Maxwell's Equations | 63 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 74 | Fradkin E. — Field theories of condensed matter systems | 272 | Weatherburn C. — Advanced Vector Analysis | 25, 51, 119, 126 | Greiner W. — Quantum mechanics. An introduction | 205 | Thaller B. — Visual quantum mechanics | 96 | Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 57 | Shankar R. — Basic Training In Mathematics | 201 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 547 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 16—20, 37, 42, 72, 77, 80, 153 | Zagoskin A.M. — Quantum theory of many-body systems | 20, 177 | Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 153 | Walecka J.D. — Fundamentals of statistical mechanics | 140, 142, 148ff | Ziman J.M. — Elements of Advanced Quantum Theory | 44, 178, 181 | Planck M. — Introduction to Theoretical Physics | 231—232, 241—243 | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 73, 331 | Ito K. — Encyclopedic Dictionary of Mathematics | 130.A, 442.D | Menzel D.H. — Mathematical Physics | 143, 145, 152, 314, 333 | Brown L.S. — Quantum Field Theory | 421 | Mukamel S. — Principles of nonlinear spectroscopy | 81 | Konopinski E.J. — Electromagnetic fields and relativistic particles | 87, 171, 477 | Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 166—167, 170—171 | Thaller B. — The Dirac equation | 109, 119, 194, 195 | Schercliff J.A. — Vector Fields | 233, 261, 267, 271 329 | Heitler W. — The Quantum Theory of Radiation | 2, 19, 41, 59, 65 | Cleland A.N. — Foundations of nanomechanics | 244 | Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | also $\rightarrow$ "Potential" | Gottfried K., Weisskopf V.F. — Concepts of particle physics (volume 2) | 195 | Yamamoto Y., Imamoglu A. — Mesoscopic quantum optics | 34 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 314 | Bailin D., Love A. — Introduction to Gauge Field Theory | 17, 33 | Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 388, 416 | Seitz F. — Modern Theory of Solids | 211, 577 | Nahin P.J. — The Science of Radio | 8, 12 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 160, 162, 191 (see also “Gauge field”) | Billingham J., King A.C. — Wave Motion | 144 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-4-1 ff, II-15-1 ff | Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | see “Potential, scalar, vector” | Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 138, 171 | Mercier A. — Analytical and canonical formalism in physics | 31, 47, 124, 126, 132 | Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 16, 37, 43, 162 | Logan J.D. — Invariant Variational Principles | see “Four-potential” | Englert B.G. (Ed) — Quantum Mechanics | 322, 437 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 56, 82—83, 286, 294 | Stoner E.C. — Magnetism and Atomic Structure with 56 diagrams | 27, 32 | Griffits D. — Introduction to elementary particles | 226—228 | Pope S.B. — Turbulent Flows | 211 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 382 | Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. — Photons and atoms: introduction to quantum electrodynamic | (see “Longitudinal vector potential”, “Transverse vector potential”) | Desloge E.A. — Classical Mechanics. Volume 1 | 740 | Orlando T.P., Delin K.F. — Foundations of Applied Superconductivity | 230 | Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 9, 111 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 424, 425—428, 431—433, 435—437, 454—456, 459, 465, 468 | Nakamura K., Harayama T. — Quantum chaos and quantum dots | 80 | Kuttler K. — Calculus, Applications and Theory | 596 | Ziman J.M. — Electrons and Phonons: The Theory of Transport Phenomena in Solids | 95 | Slichter Ch.P. — Principles of magnetic resonance. With examples from solid state physics | 69 | Avery J. — Creation and Annihilation Operators | 97, 99, 103, 104, 106, 107, 148, 164 | Beaurepaire E., Bulou H., Scheurer F. — Magnetism: A Synchrotron Radiation Approach | 97, 204, 246 | Stahl A. — Physics with tau leptons | 97, 99, 103, 104, 106, 107, 148, 164 | Schulman L.S. — Techniques and applications of path integration | 22—26, 212 | Greiner W. — Classical electrodynamics | 205 | Zee A. — Quantum field theory in a nutshell | 217 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 84, 107, 153 | Greiner W., Mueller B. — Quantum mechanics: symmetries | 42 | Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 266 | Siegel W. — Fields | IIA7 | Bernard P.S., Wallace J.M. — Turbulent Flow: Analysis, Measurement and Prediction | 417 | Weyl H. — Space, Time, Matter | 74, 163 | Basdevant J.-L., Dalibard J. — Quantum Mechanics | 301, 306, 337 | Auletta G. — Foundations and Interpretation of Quantum Mechanics | 74, 103, 210, 694 | Rose M.E. — Elementary theory of angular momentum | 7, 128 | Holmes R.A. — Physical Principles of Solid State Devices | 259 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 14, 182 | Fox M. — Optical properties of solids | 257-8, 267 | Phillips P. — Advanced Solid State Physics | 258 | Gottfried K., Weisskopf V.F. — Concepts of Particle Physics | 33, 39, 159, 160 | Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 657—659 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 104, 126, 224, 225 | Ohanian H.C. — Classical Electrodynamics | 229 | Toro E.F. — Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction | 38 | Hermann R. — Differential geometry and the calculus of variations | 185, 186 | Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 624 | Gallavotti G. — Foundations of fluid mechanics | 53 | Davis H. F., Snider A. D. — Introduction to Vector Analysis | 137 | Lindsay R.B. — Mechanical Radiation | 170 | Roepstorf G. — Path integral approach to quantum physics | 47, 192 | Büchner J., Dum C., Scholer M. — Space Plasma Simulation | 224 | Morse P.M. — Methods of theoretical physics | 53 | Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 37 | Sommerfeld A., Ramberg Edward G. (translator) — Electrodynamics. Lectures on theoretical physics, Vol. III | 101 | McQuarrie D.A. — Statistical Mechanics | 622 | Siegel W. — Fields | IIA7 | Greiner W., Reinhardt J. — Field quantization | 143 | Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 5, 128, 152 | Wiedemann H. — Particle accelerator physics II | 3, 44, 229 | McGuire J.H. — Electron correlation dynamics in atomic collisions | 199 | Banyai L., Koch S.W. — Semiconductor quantum dots | 201 | Thaller B. — The Dirac equation | 109, 119, 194, 195 | Wilson W.F.R.S. — Theoretical physics. Volume II. Electromagnetism and optics | 119, 120, 214 | Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 96 | Slater J.C., Frank N.H. — Electromagnetism | 62—64, 82—83, 86—88 | Singh J. — Semiconductor Optoelectronics: Physics and Technology | 172 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 1.2 | Collins G.W. — The virial theorem in stellar astrophysics | 31 | Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 38, 40, 44, 47, 50, 84, 116, 118, 119, 137, 173, 182, 291, 318, 360 | Davies J.H. — The physics of low-dimensional semiconductors : an introduction | 207 | Datta S. — Electronic transport in mesoscopic systems | 11, 30, 97, 120, 123, 141, 211, 239, 241, 278 | Griffits D.J. — Introductions to electrodynamics | 54, 234—246, 416—442 | Strang G. — Introduction to Applied Mathematics | 206 | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 168, 351 | Anderson J.L. — Principles of Relativity Physics | 46, 217—219, 229 | Wald R.M. — General Relativity | 64, 70—71 | Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | 93—98, 239—240 | Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics | 250 | Walls D.F., Milburn G.J. — Quantum Optics | 8, 199 | Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 63, 93, 96 | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 139, 154 | Edward M. Purcell — Electricity and magnetism | 220—223 | Mittra R., Lee S.W. — Analytical Techniques in the Theory of Guided Waves | 15 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 408 | Haus H.A. — Waves and Fields in Optoelectronics | 11, 84, 116, 159, 169, 278, 315 | Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 80, 131 | Abrikosov A.A., Gîr'kov L.P., Dzyalosiiinskh I.Yk. — Quantum field theoretical methods in statistical physics | 250 | Slater J., Frank N. — Introduction to Theoretical Physics | 231—232, 241—243 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-4-1 ff, II-15-1 ff | Kleinert H. — Gauge fields in condensed matter (part 2) | 56, 283, 290 | Zorich V.A., Cooke R. — Mathematical analysis II | 295, 296 | Zorich V. — Mathematical Analysis | 295, 296 | Reichl L.E. — Modern Course in Statistical Physics | 162, 595 | Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 657—659 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 424, 425—428, 431—433, 435—437, 454—456, 459, 465, 468 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 314 | Kittel C. — Introduction to solid state physics | 651 | Liboff R.L. — Introductory quantum mechanics | 380 | Bell J., Kearsley M., Pitaevskii L. — Course of Theoretical Physics, Volume 8, Volume 8, Second Edition: Electrodynamics of Continuous Media | 11, 108, 120, 399 | Landau L.D., Lifshitz E.M. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 11, 108, 120, 399 | Bell J.S., Kearsley M.J. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 11, 108, 120, 399 | L.D. Landau, E.M. Lifshitz — Electrodynamics of Continuous Media | 11, 108, 120, 399 | L.D. Landau — Electrodynamics of Continuous Media | 11, 108, 120, 399 | L. D. LANDAU, E. M. LIFSHITZ — ELECTRODYNAMICS OF CONTINUOUS MEDIA | 11, 108, 120, 399 |
|
|