Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Manifold



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Weintraub S. — Differential Forms. A complement to vector calculus
Guillemin V., Pollack A. — Differential topology3
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1)535
Dietterich T.G., Becker S., Ghahramani Z. — Advances in neural information processing systems 14 (Vol. 1 and vol. 2)945
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)880
Berger M. — A Panoramic View of Riemannian Geometry162
Olver P.J. — Equivalence, Invariants and Symmetry8, 29, 32, 35, 253
Oprea J. — Differential Geometry and Its Applications313
Eisenbud D., Harris J. — The Geometry of Schemes8
Schenck H. — Computational algebraic geometry134, 111
Felsager B. — Geometry, particles and fields258
Baker A. — Matrix Groups: An Introduction to Lie Group Theory182
Fulton W. — Young tableaux: with applications to representation theory and geometry212
Miller E., Sturmfels B. — Combinatorial Commutative Algebra86
Hicks N. — Notes on differential geometry2
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint2
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)880
Springer G. — Introduction to Riemann Surfaces53
Millman R.S., Parker G.D. — Elements of Differential Geometry204
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations56
Mitchell T. — Web Mapping
Ward R.S., Wells R.O. — Twistor geometry and field theory38
Goldstein H., Poole C., Safko J. — Classical mechanics576, 611, 618
Lee J.M. — Introduction to Topological Manifolds1, 4, 33
Griffiths H. — Surfaces98; generalized, 96
Artin M. — Algebra596
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis264
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry462—463, 517, 604—609, 627—628
Kock A. — Synthetic Differential Geometry200
Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation86, 87, 250
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry251,370, 487
Sepanski R.M. — Compact Lie Groups1
Lynch S. — Dynamical Systems with Applications Using Mathematica®46
Eilenberg S., Steenrod N. — Foundations of Algebraic Topology311
Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids1
Hall G.R., Lee — Continuous dynamical systems7
Torretti R. — Relativity and Geometry2, 72 f, 257 figures, 348 note 3
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra40, 47, 52, 55, 56, 125, 131, 142, 148, 182, 189, 192, 201, 214, 216—217, 225, 228, 229, 233
Devlin K.J. — Language of Mathematics: Making the Invisible Visible242—246
Hatcher A. — Algebraic Topology231, 527, 529
Kohonen T. — Self-organizing maps29, 46, 217
Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice10, 22, 65, 106
Hirzebruch F. — Topological Methods in Algebraic Geometry24
Falconer K.J. — Techniques in Fractal Geometry23
Krantz S.G. — Function Theory of Several Complex Variables493
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps59, 60.
Tennison B.R., Hitchin N.J. (Ed) — Sheaf Theory90—91, 151
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds334
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop192—197
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding21, 303
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics1
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration108,109
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1108, 109
Steenrod N.E. — The Topology of Fibre Bundles20
Vick J.W. — Homology theory. An introduction to algebraic topology146
Cohn P.M. — Algebraic numbers and algebraic functions131
Royden H.L. — Real Analysis169—170 (24)
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2I-2, I-3
Brickell F., Clark R.S. — Differentiable Manifolds19
Royden H.L. — Real Analysis169—170 (24)
Lang S. — Real Analysis480
Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces4
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities3
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists25, 31, 39
Poisson E. — A relativists toolkit1—3, 8, 12, 26, 59, 60, 68, 69, 76, 120, 126, 127, 138, 146, 166, 169, 178, 202
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering255, 368, 415, 465, 515
Greenberg M.D. — Advanced engineering mathematics356
Bleecker D. — Gauge Theory and Variational Principles7
Stewart J. — Advanced general relativity2
O'Neill B. — Elementary differential geometry184—187
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories6, 11, 12
Simon B. — Representations of Finite and Compact Groups122
De Felice F., Clarke C.J.S. — Relativity on curved manifolds19ff
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring4, 8, 9
Tapp K. — Matrix Groups for Undergraduates104
Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture1—13
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1)95
Strichartz R.S. — The way of analysis599
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems102, 126, 149, 161, 231—233
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime1, 21—22, 25, 50, 88—90, 116, 121, 130, 135, 197, 208—209
Kasner E., Newman J. — Mathematics and the Imagination119—124, 133, 149, 154
Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors)1
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds203
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)1, 459
Aoki K. — Nonlinear dynamics and chaos in semiconductors140
Munkres J.R. — Analysis on manifolds200
Mercier A. — Analytical and canonical formalism in physics55, 61, 67, 85, 113
Rourke C.P., Sanderson B.J. — Introduction to Piecewise-Linear Topology7
Ludvigsen M. — General relativity. A geometric approach83
Kirillov A.A. — Elements of the Theory of Representations62
Matveev S.V. — Lectures on Algebraic Topology18
Logan J.D. — Invariant Variational Principles78
Zieschang H. — Surfaces and Planar Discontinuous Groups243
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics109
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology59
Berger M., Cole M. (translator) — Geometry I (Universitext)see “Differentiable”
McCoy N.H. — Rings and ideals203
Munkres J. — Topology225, 316
Stetter H. J. — Numerical polynomial algebra19
Tarantola A. — Inverse problem theory and methods for model parameter estimation2, 232
Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation65
Grünbaum B. — Convex Polytopessee “Eulerian manifold”
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory214, 494—495
Janich K. — Topology19, 85, 106
Tamura I. — Topology of lie groups, I and II40
Searle S.R. — Matrix algebra useful for statistics180
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design558
Greenberg M.J., Harper J.R. — Algebraic Topology28
Marcja A., Toffalori C. — A Guide to Classical and Modern Model Theory299—302
O'Neill B. — The Geometry of Kerr Black Holes2
D'Inverno R. — Introducing Einstein's Relatvity55-7, 131, 177, 178
Hormander L. — The analysis of linear partial differential operators I142, 143
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua9
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications68, 69, 71, 73, 76, 84
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theoremssee Banach manifold
Straumann N. — General relativity and relativistic astrophysics4ff
Price J.F. — Lie groups and compact groups2
Dunn F., Parberry I. — 3D Math Primer for Graphics and Game Development330
Hatfield B. — Quantum field theory of point particles and strings540
Arwini K. — Information Geometry: Near Randomness and Near Independence19
Oprea J. — Differential Geometry and Its Applications398
Narasimhan R. — Analysis on Real and Complex Manifolds52
Grasman J. — Asymptotic methods for relaxation oscillations and applications191
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142)524
Sachs R.K., Wu H. — General relativity for mathematicians3
Moise E.E. — Geometric topology in dimensions 2 and 34
Haller G. — Chaos Near Resonance371
Sarfraz M. — Advances in geometric modeling206, 283
Bishop R.L., Crittenden R.J. — Geometry of manifolds2
Bell E.T. — The Development of Mathematics203, 254, 359
Friedlander F.G. — The Wave Equation on a Curved Space-Time2
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables175
Steenrod N. — The topology of fiber bundles20
Dold A. — Lectures on Algebraic Topology247
Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions186ff
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity18
Browder A. — Mathematical Analysis: An Introduction253, 254
Eisenbud D., Harris J. — The geometry of schemes (textbook draft)8
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry56
Rice J.R. — The approximation of functions. Nonlinear and multivariate theory171
Cairns S.S. — Introductory topology18, 162
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology127
Cohn P.M. — Algebraic Numbers and Algebraic Functions131
Aigner M. — Graph theory17
Brickell F., Clark R.S. — Differentiable manifolds19
Valentine F.A. — Convex Sets115
Hermann R. — Differential geometry and the calculus of variations26, 30, 35, 50
Montgomery D., Zippin L. — Topological transformation groups44
Amari Sh. — Differential Geometrical Methods in Statistics (Lecture notes in statistics)12
Kinsey L.C. — Topology of surfaces64
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.111
Weeks J.R. — The shape of space11
Cohn P.M. — Lie Groups5
Israel W. (ed.) — Relativity, astrophysics and cosmology289-290
Spanier E.H. — Algebraic Topology292, 356—357
Glaser L.C. — Geometrical Combinatorial Topology. Volume Isee $n$-manifold
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories2
Elden L. — Numerical Linear Algebra and Applications in Data Mining117
Sommerville D.M.Y. — The elements of non-Euclidean geometry194
Hausner M., Schwartz J.T. — Lie groups, Lie algebras20
Audin M. — Geometry293
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 12, 3
Munkres J.R. — Topology: A First Course223
Audin M. — Geometry293
Collatz L. — The numerical treatment of differential equations34, 307
Massey W.S. — Algebraic Topology: an introduction240—241
Springer G. — Introduction to Riemann Surfaces53
Glaser L.C. — Geometrical Combinatorial Topology. Volume Isee $n$-manifold
Vasil'ev V. A., Sossinski A. — Introduction to Topology50
Kasner E., Newman J. — Mathematics and the imagination119—124, 133, 149, 154
Krantz S.G. — Function theory of several complex variables493
Carroll R.W. — Mathematical physics351
Shick P.L. — Topology: Point-set and geometric170, 174
Audichya A. — Mathematics: Marvels and milestones26, 27
Choquet-Bruhat Y. — General Relativity and the Einstein Equations55
Lane S.M. — Mathematics, form and function233—236, 239ff
Lemm J.M. — Mathematical elasticity. Theory of shells439, 472, 502, 520, 526, 529, 542, 543
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos7, 32, 86
Mandl F. — Quantum mechanics4, 13, 76—77, 79—80, 98, 100
Frankel T. — The geometry of physics: an introduction13, 19
Bjorner A. — Oriented Matroids93
Hartshorne R. — Algebraic Geometry31, see also "Complex manifold"
Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications)93
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms20
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms481
Schutz B.F. — A first course in general relativity151, 176
Bell E.T. — Men of mathematics. Volume 2291, 557ff.
Anderson J.L. — Principles of Relativity Physics5
Wald R.M. — General Relativity12
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis3
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems151—158
Israel W. (ed.) — Relativity, astrophysics and cosmology289—290
Zeidler E. — Oxford User's Guide to Mathematics638, 800, 836
Pier J.-P. — Mathematical Analysis during the 20th Century185, 289
Israel W. — Relativity, Astrophysics and Cosmology289—290
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields456, 469
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus109
Greenberg M.J., Harper J.R. — Algebraic topology: a first course28
Meyer K.R. — Periodic Solutions of the N-Body Problem53
Bruno A.D., Fen L.S. — Power geometry in algebraic and differential equations217
Morandi G. — Statistical Mechanics: An Intermediate Course5, App.A
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory1—4, 143—146
Akenine-Möller T. — Real-Time Rendering447, 451
Frankel T. — The geometry of physics: An introduction13, 19
Flanders H. — Differential Forms with Applications to the Physical Sciences49 ff
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)340, 340—351
Schutz B. — Geometrical Methods in Mathematical Physics23 Manifold, analytic
Zorich V.A., Cooke R. — Mathematical analysis II320—325
Zorich V. — Mathematical Analysis320—325
Synge J. L. — Tensor Calculus4
Sagle A. A. — Introduction to Lie groups and Lie algebras40, 41, 43
Stamatescu I., Seiler E. — Approaches to Fundamental Physics93, 94, 97, 100, 101
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics111
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts)29—33
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics2
Mac Lane S. — Mathematics: Form and Function233—236, 239ff
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory6, 11, 12
Bhatia R. — Matrix Analysis167
Russel B. — Principles of Mathematics67
Keith Devlin — Mathematics: The New Golden Age248, 257
Nash C., Sen S. — Topology and geometry for physicists25—50, 137
Lundell A., Weingram S. — The topology of CW complexes5
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)291
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)291
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)291
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå