Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Guillemin V., Pollack A. — Differential topology | 3 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 535 |
Dietterich T.G., Becker S., Ghahramani Z. — Advances in neural information processing systems 14 (Vol. 1 and vol. 2) | 945 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 880 |
Berger M. — A Panoramic View of Riemannian Geometry | 162 |
Olver P.J. — Equivalence, Invariants and Symmetry | 8, 29, 32, 35, 253 |
Oprea J. — Differential Geometry and Its Applications | 313 |
Eisenbud D., Harris J. — The Geometry of Schemes | 8 |
Schenck H. — Computational algebraic geometry | 134, 111 |
Felsager B. — Geometry, particles and fields | 258 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 182 |
Fulton W. — Young tableaux: with applications to representation theory and geometry | 212 |
Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 86 |
Hicks N. — Notes on differential geometry | 2 |
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 2 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 880 |
Springer G. — Introduction to Riemann Surfaces | 53 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 204 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 56 |
Mitchell T. — Web Mapping | |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 38 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 576, 611, 618 |
Lee J.M. — Introduction to Topological Manifolds | 1, 4, 33 |
Griffiths H. — Surfaces | 98; generalized, 96 |
Artin M. — Algebra | 596 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 264 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 462—463, 517, 604—609, 627—628 |
Kock A. — Synthetic Differential Geometry | 200 |
Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 86, 87, 250 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 251,370, 487 |
Sepanski R.M. — Compact Lie Groups | 1 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 46 |
Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 311 |
Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 1 |
Hall G.R., Lee — Continuous dynamical systems | 7 |
Torretti R. — Relativity and Geometry | 2, 72 f, 257 figures, 348 note 3 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 40, 47, 52, 55, 56, 125, 131, 142, 148, 182, 189, 192, 201, 214, 216—217, 225, 228, 229, 233 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 242—246 |
Hatcher A. — Algebraic Topology | 231, 527, 529 |
Kohonen T. — Self-organizing maps | 29, 46, 217 |
Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 10, 22, 65, 106 |
Hirzebruch F. — Topological Methods in Algebraic Geometry | 24 |
Falconer K.J. — Techniques in Fractal Geometry | 23 |
Krantz S.G. — Function Theory of Several Complex Variables | 493 |
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps | 59, 60. |
Tennison B.R., Hitchin N.J. (Ed) — Sheaf Theory | 90—91, 151 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 334 |
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 192—197 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 21, 303 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 1 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 108,109 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 108, 109 |
Steenrod N.E. — The Topology of Fibre Bundles | 20 |
Vick J.W. — Homology theory. An introduction to algebraic topology | 146 |
Cohn P.M. — Algebraic numbers and algebraic functions | 131 |
Royden H.L. — Real Analysis | 169—170 (24) |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-2, I-3 |
Brickell F., Clark R.S. — Differentiable Manifolds | 19 |
Royden H.L. — Real Analysis | 169—170 (24) |
Lang S. — Real Analysis | 480 |
Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 4 |
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 3 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 25, 31, 39 |
Poisson E. — A relativists toolkit | 1—3, 8, 12, 26, 59, 60, 68, 69, 76, 120, 126, 127, 138, 146, 166, 169, 178, 202 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 255, 368, 415, 465, 515 |
Greenberg M.D. — Advanced engineering mathematics | 356 |
Bleecker D. — Gauge Theory and Variational Principles | 7 |
Stewart J. — Advanced general relativity | 2 |
O'Neill B. — Elementary differential geometry | 184—187 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 6, 11, 12 |
Simon B. — Representations of Finite and Compact Groups | 122 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 19ff |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 4, 8, 9 |
Tapp K. — Matrix Groups for Undergraduates | 104 |
Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 1—13 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 95 |
Strichartz R.S. — The way of analysis | 599 |
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 102, 126, 149, 161, 231—233 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 1, 21—22, 25, 50, 88—90, 116, 121, 130, 135, 197, 208—209 |
Kasner E., Newman J. — Mathematics and the Imagination | 119—124, 133, 149, 154 |
Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors) | 1 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 203 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 1, 459 |
Aoki K. — Nonlinear dynamics and chaos in semiconductors | 140 |
Munkres J.R. — Analysis on manifolds | 200 |
Mercier A. — Analytical and canonical formalism in physics | 55, 61, 67, 85, 113 |
Rourke C.P., Sanderson B.J. — Introduction to Piecewise-Linear Topology | 7 |
Ludvigsen M. — General relativity. A geometric approach | 83 |
Kirillov A.A. — Elements of the Theory of Representations | 62 |
Matveev S.V. — Lectures on Algebraic Topology | 18 |
Logan J.D. — Invariant Variational Principles | 78 |
Zieschang H. — Surfaces and Planar Discontinuous Groups | 243 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 109 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 59 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | see “Differentiable” |
McCoy N.H. — Rings and ideals | 203 |
Munkres J. — Topology | 225, 316 |
Stetter H. J. — Numerical polynomial algebra | 19 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 2, 232 |
Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 65 |
Grünbaum B. — Convex Polytopes | see “Eulerian manifold” |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 214, 494—495 |
Janich K. — Topology | 19, 85, 106 |
Tamura I. — Topology of lie groups, I and II | 40 |
Searle S.R. — Matrix algebra useful for statistics | 180 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 558 |
Greenberg M.J., Harper J.R. — Algebraic Topology | 28 |
Marcja A., Toffalori C. — A Guide to Classical and Modern Model Theory | 299—302 |
O'Neill B. — The Geometry of Kerr Black Holes | 2 |
D'Inverno R. — Introducing Einstein's Relatvity | 55-7, 131, 177, 178 |
Hormander L. — The analysis of linear partial differential operators I | 142, 143 |
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 9 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 68, 69, 71, 73, 76, 84 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | see Banach manifold |
Straumann N. — General relativity and relativistic astrophysics | 4ff |
Price J.F. — Lie groups and compact groups | 2 |
Dunn F., Parberry I. — 3D Math Primer for Graphics and Game Development | 330 |
Hatfield B. — Quantum field theory of point particles and strings | 540 |
Arwini K. — Information Geometry: Near Randomness and Near Independence | 19 |
Oprea J. — Differential Geometry and Its Applications | 398 |
Narasimhan R. — Analysis on Real and Complex Manifolds | 52 |
Grasman J. — Asymptotic methods for relaxation oscillations and applications | 191 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 524 |
Sachs R.K., Wu H. — General relativity for mathematicians | 3 |
Moise E.E. — Geometric topology in dimensions 2 and 3 | 4 |
Haller G. — Chaos Near Resonance | 371 |
Sarfraz M. — Advances in geometric modeling | 206, 283 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 2 |
Bell E.T. — The Development of Mathematics | 203, 254, 359 |
Friedlander F.G. — The Wave Equation on a Curved Space-Time | 2 |
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 175 |
Steenrod N. — The topology of fiber bundles | 20 |
Dold A. — Lectures on Algebraic Topology | 247 |
Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 186ff |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 18 |
Browder A. — Mathematical Analysis: An Introduction | 253, 254 |
Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 8 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 56 |
Rice J.R. — The approximation of functions. Nonlinear and multivariate theory | 171 |
Cairns S.S. — Introductory topology | 18, 162 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 127 |
Cohn P.M. — Algebraic Numbers and Algebraic Functions | 131 |
Aigner M. — Graph theory | 17 |
Brickell F., Clark R.S. — Differentiable manifolds | 19 |
Valentine F.A. — Convex Sets | 115 |
Hermann R. — Differential geometry and the calculus of variations | 26, 30, 35, 50 |
Montgomery D., Zippin L. — Topological transformation groups | 44 |
Amari Sh. — Differential Geometrical Methods in Statistics (Lecture notes in statistics) | 12 |
Kinsey L.C. — Topology of surfaces | 64 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 111 |
Weeks J.R. — The shape of space | 11 |
Cohn P.M. — Lie Groups | 5 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 289-290 |
Spanier E.H. — Algebraic Topology | 292, 356—357 |
Glaser L.C. — Geometrical Combinatorial Topology. Volume I | see $n$-manifold |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 2 |
Elden L. — Numerical Linear Algebra and Applications in Data Mining | 117 |
Sommerville D.M.Y. — The elements of non-Euclidean geometry | 194 |
Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 20 |
Audin M. — Geometry | 293 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 2, 3 |
Munkres J.R. — Topology: A First Course | 223 |
Audin M. — Geometry | 293 |
Collatz L. — The numerical treatment of differential equations | 34, 307 |
Massey W.S. — Algebraic Topology: an introduction | 240—241 |
Springer G. — Introduction to Riemann Surfaces | 53 |
Glaser L.C. — Geometrical Combinatorial Topology. Volume I | see $n$-manifold |
Vasil'ev V. A., Sossinski A. — Introduction to Topology | 50 |
Kasner E., Newman J. — Mathematics and the imagination | 119—124, 133, 149, 154 |
Krantz S.G. — Function theory of several complex variables | 493 |
Carroll R.W. — Mathematical physics | 351 |
Shick P.L. — Topology: Point-set and geometric | 170, 174 |
Audichya A. — Mathematics: Marvels and milestones | 26, 27 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 55 |
Lane S.M. — Mathematics, form and function | 233—236, 239ff |
Lemm J.M. — Mathematical elasticity. Theory of shells | 439, 472, 502, 520, 526, 529, 542, 543 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 7, 32, 86 |
Mandl F. — Quantum mechanics | 4, 13, 76—77, 79—80, 98, 100 |
Frankel T. — The geometry of physics: an introduction | 13, 19 |
Bjorner A. — Oriented Matroids | 93 |
Hartshorne R. — Algebraic Geometry | 31, see also "Complex manifold" |
Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 93 |
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 20 |
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms | 481 |
Schutz B.F. — A first course in general relativity | 151, 176 |
Bell E.T. — Men of mathematics. Volume 2 | 291, 557ff. |
Anderson J.L. — Principles of Relativity Physics | 5 |
Wald R.M. — General Relativity | 12 |
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis | 3 |
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 151—158 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 289—290 |
Zeidler E. — Oxford User's Guide to Mathematics | 638, 800, 836 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 185, 289 |
Israel W. — Relativity, Astrophysics and Cosmology | 289—290 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 456, 469 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 109 |
Greenberg M.J., Harper J.R. — Algebraic topology: a first course | 28 |
Meyer K.R. — Periodic Solutions of the N-Body Problem | 53 |
Bruno A.D., Fen L.S. — Power geometry in algebraic and differential equations | 217 |
Morandi G. — Statistical Mechanics: An Intermediate Course | 5, App.A |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 1—4, 143—146 |
Akenine-Möller T. — Real-Time Rendering | 447, 451 |
Frankel T. — The geometry of physics: An introduction | 13, 19 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 49 ff |
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 340, 340—351 |
Schutz B. — Geometrical Methods in Mathematical Physics | 23
Manifold, analytic |
Zorich V.A., Cooke R. — Mathematical analysis II | 320—325 |
Zorich V. — Mathematical Analysis | 320—325 |
Synge J. L. — Tensor Calculus | 4 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 40, 41, 43 |
Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 93, 94, 97, 100, 101 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 111 |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 29—33 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 2 |
Mac Lane S. — Mathematics: Form and Function | 233—236, 239ff |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 6, 11, 12 |
Bhatia R. — Matrix Analysis | 167 |
Russel B. — Principles of Mathematics | 67 |
Keith Devlin — Mathematics: The New Golden Age | 248, 257 |
Nash C., Sen S. — Topology and geometry for physicists | 25—50, 137 |
Lundell A., Weingram S. — The topology of CW complexes | 5 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 291 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 291 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 291 |