|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Reynolds number
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 294 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 116.B 205.C | Chung T.J. — Computational fluid dynamics | 107, 184, 370, 420, 478, 899, 921 | Bathe K.-J. — Finite element procedures | 677 | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 440, 479, 485, 495, 520 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 1795 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 1795 | Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 98, 355, 676 | Acheson David — From calculus to chaos | 124 | Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 430, 437, 461, 475 | Moaveni S. — Finite Element Analysis .Theory and Application with ANSYS | 395 | Donea J., Huerta A. — Finite Element Methods for Flow Problems | 271 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 66, 97, 98, 115, 149, 156, 163, 164, 276 | Versteeg H.K., Malalasekera W. — An introduction to computational fluid dynamics | 10, 36, 40—49, 57, 60, 69—70, 73—78, 114, 120, 203, 222, 224 | Kevorkian J., Cole J.D. — Multiple Scale and Singular Perturbation Methods | 588 | Nayfeh A.H. — Perturbation Methods | 40, 360 | Vilenkin A., Shellard E.P.S. — Cosmic strings and other topological defects | 254 | Kundu P.K., Cohen I.R. — Fluid mechanics | 149, 259, 268, 339 | Clift R., Grace J.R., Weber M.E. — Bubbles, drops, and particles | 26 | Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 96, 97 | Murdock J. — Perturbations: Theory and Methods | 7, 426 | Drazin P. — Introduction to Hydrodynamic Stability | 3, 11, 14, 17 | Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 2, 2, 9 | Ladyzhenskaya O.A. — Mathematical theory of viscous incompressible flow | 2—5, 113, 118, 172, 206 | Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 36, 96 | Biscamp D. — Magnetohydrodynamic turbulence | 47 | Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics | 115 | Bloomer J.J. — Practical fluid mechanics for engineering applications | 142 | Batchelor G.K. — An Introduction to Fluid Dynamics | 214 | Debnath L. — Nonlinear water waves | 23, 25, 233 | Huang K. — Statistical Mechanics | 122 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 291, 297, 299 | Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 47 | Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 61, 675 | Winterbone D.E. — Advanced thermodynamics for engineers | 303 | Maurel A., Petitjeans P. — Vortex Structure and Dynamics | 51, 52, 57, 62, 64, 75, 84, 106, 116 | Alexiades V. — Mathematical Modeling of Melting and Freezing Processes | 152 | Eringen A.C. — Mechanics of continua | 514 | Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 205, 230—233, 275, 295, 296, 597 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 64 | Zel'dovich Ya.B., Raizer Yu.P. — Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (vol. 1) | 72 | Frank J., King A., Raine D.J. — Accretion Power in Astrophysics | 69, 70 | Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 201 | Ito K. — Encyclopedic Dictionary of Mathematics | 116.B, 205.C | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:57, 3:1639, 6:4138 | Ready J.F., Farson D.F. — LIA handbook of laser materials processing | 267 | Collins G.W. — Fundamentals of Stellar Astrophysics | 196 | Fundamentals of engineering. Supplied-reference handbook | 40, 118, 119 | Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 73, 139 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 70, 277 | Cebeci T., Platzer M., Chen H. — Analysis of Low-Speed Unsteady Airfoil Flows | 6, 16, 19, 27, 61, 99, 101, 120, 123, 124, 127, 128, 130, 132, 136 | Schercliff J.A. — Vector Fields | 133, 283 | Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 452—483 | Thevenin D. (Ed), Janiga G. (Ed) — Optimisation in Computational Fluid Dynamics | 22, 28, 29, 32, 47, 48, 50, 51, 100, 169, 192, 193, 197, 208, 222, 224, 228, 256 | Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 8, 85, 229 | Reist P.C. — Aerosol Science and Technology | 45—49, 135 | Kyle T.G. — Atmospheric transmission, emission and scattering | 54 | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 346, 350 | Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1 | 2, 8, 27, 59, 294, 305, 319, 325, 339, 369 | Forsythe W.E. — Smithsonian Physical Tables | 337 | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction | 188 | Lebowitz J.L., Montroll E.W. — Nonequilibrium phenomena I. The boltzmann equation | 135 | Shapira Y. — Solving PDEs in C++: numerical methods in a unified object-oriented approach | 423 | Billingham J., King A.C. — Wave Motion | 364 | McHardy J., Sawan S.P. — See Inside! Supercritical Fluid Cleaning by Samuel P. Haber: Book Cover * o Table of Contents Supercritical Fluid Cleaning: Fundamentals, Technology and Applications | 73, 80, 224, 225, 227, 235, 239, 241, 273 | Hayes W.D., Probstein R.F. — Hypersonic Flow Theory | 297, 299, 325 | Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 57 | Lai W.M., Rubin D., Krempl E. — Introduction to continuum mechanics | 370 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 313 | Zel'dovich Ya.B., Raizer Yu.P. — Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (vol. 2) | 72, 811 | Ipsen D.C. — Units, Dimensions, and Dimensionless Numbers | 138, 185—187, 203 | Callaghan P. — Principles of Nuclear Magnetic Resonance Microscopy | 452 | Cercignani C. — Theory and Application of the Boltzman Equation | 233 | Betchov R. — Stability of Parallel Flows | 1 | Pope S.B. — Turbulent Flows | 5, 26 | Huang K. — Introduction to Statistical Physics | 99 | Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 22 | Strelkov S.P. — Mechanics | 384 | Tullis J.P. — Hydraulics of Pipelines: Pumps, Valves, Cavitation Transients | 1 | Pozrikidis C. — Fluid Dynamics: Theory, Computation, and Numerical Simulation | 297, 301 | Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 21—23, 25 | Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 150 | van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37 | 172, 240—241 | Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 188, 189 | Padmanabhan T. — Theoretical Astrophysics: Volume 1, Astrophysical Processes | 427 | Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)12, 207 | Cotterill R.M.J. — Biophysics: An Introduction | 78, 105, 209 | Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 94 | Cheremisinoff N.P. — Liquid Filtration | 3 | Curle N., Davies H. — Modern Fluid Dynamics. Volume 1. Incompressible flow | 123, 125, 132, 175, 233 | Arya A.P. — Introduction to Classical Mechanics | 664 | Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 220, 264, 287 | Sone Y. — Molecular Gas Dynamics Theory, Techniques, and Applications | 95 | Padmanabhan T. — Cosmology and Astrophysics through Problems | 234, 238 | Mullin T. — The nature of chaos | 70 | Batchelor G. — Introduction to Fluid Dynamics | 214 | Curle N., Davies H. — Modern Fluid Dynamics. Compressible flow | 285 | Sutton O.G. — Mathematics in action | 12 | Bird G.A. — Molecular gas dynamics and the direct simulation of gas flows | 383 | Ballauff M., Wolf B.A. — Polymer Physics | 4 | Fox W.P., Goirdano F.R., Weir M.D. — First Course in Mathematical Modeling | 318, 332 | Alder B., Fernbach S., Rotenberg M. — Methods in computational physics. Volume 3. Fundamental methods in hydrodynamics | 346 | Furui S., Sandhi M.M. (eds.) — Advances in Speech Signal Processing. Part II | 242 | Accetta J.S. (ed.), Shumaker D.L. (ed.), Rogatto W.D. (ed.) — The Infrared & Electro-Optical Systems Handbook. Volume 3: Electro-Optical Components | 367, 369 | Yang W. — Fluidization, Solids Handling, and Processing: Industrial Applications | 37, 41, 43, 198, 512, 654 | Steen W.M. — Laser material Processing | 89, 146 | Murdock J.A. — Perturbations: Theory and Methods (Classics in Applied Mathematics) | 7, 426 | Alder B. (ed.), Fernbach S. (ed.), Rotenberg M. (ed.) — Methods in computational physics: advances in research and applications. Volume 3. Fundamental methods in hydrodynamics | 346 | Morse P.M. — Methods of theoretical physics | 1795 | Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 237, 245, 246, 251, 266 | McCormick S.F. — Multilevel Adaptive Methods for Partial Differential Equations | 13, 31—36 | Vogel S. — Vital Circuits: On Pumps, Pipes, and the Working of Circulatory Systems | 81, 94, 284 | Carroll R.W. — Mathematical physics | 84 | Faber T.E. — Fluid Dynamics for Physicists | 7—8 | Misra J.C. — Biomathematics: Modelling and Simulation | 175, 183, 189 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 315 | Hlavac J. — The Technology of Glass and Ceramics | 121 | Vishik M.J., Fursikov A.V. — Mathematical problems of statistical hydromechanics | 36 | Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 22, 29, 45 | David A. Mooney — Introduction to Thermodynamics and Heat Transfer | 357, 360 | Cole G.H.A., Woolfson M.M. — Planetary science. The science of planets around stars | 322 | Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 124, 125, 257, 269 | Biskamp D. — Magnetohydrodynamic Turbulence | 47 | Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 50 | Strang G. — Introduction to Applied Mathematics | 235 | Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 122, 469 | Hoover W.G. — Molecular Dynamics | 117 | Henkel M. — Conformal Invariance and Critical Phenomena | 254 | Kruegel E. — The Physics of Interstellar Dust | 295—296, 502—503 | Ottesen J.T. — Applied Mathematical Models in Human Physiology | 19, 45 | Lee A. — Mathematics Applied to Continuum Mechanics | 107 | Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 89—90, 92 | Lienhardt J.H. IV, Lienhardt J.H. V — A heat transfer textbook | 271 | Johnson W.C. — Mathematical and physical principles of engineering analysis | 227, 232 | Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 757 | Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 233, 238 | Mattheij R.M. — Partial differential equations | 150 | Addison P.S. — Fractals and chaos | 142 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 14 | Cercignani C. — Rarefied Gas Dynamics | 235 | Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 2, 7, 144 | Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 55, 72 | Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 220, 264, 287 | Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)12, 207 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 17 | Melissinos A.C. — Principles of modern technology | 252, 274 | Buckmaster J. — The Mathematics of combustion | 42, 185, 194, 195, 199, 200, 201, 208 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 201 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 201 | Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 57 | Logan J. — Applied Mathematics: A Contemporary Approach | 15, 339 | Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 201 | Cushman-Roisin B. — Introduction to geophysical fluid dynamics | 45, 72 | Van Dyke M. — Perturbation methods in fluid mechanics | 16 | Biskamp D. — Nonlinear Magnetohydrodynamics | 23, 176 |
|
|