Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cebeci T., Platzer M., Chen H. — Analysis of Low-Speed Unsteady Airfoil Flows
Cebeci T., Platzer M., Chen H. — Analysis of Low-Speed Unsteady Airfoil Flows



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Analysis of Low-Speed Unsteady Airfoil Flows

Авторы: Cebeci T., Platzer M., Chen H.

Аннотация:

This book provides an introduction to unsteady aerodynamics with emphasis on the analysis and computation of inviscid and viscous two-dimensional flows over airfoils at low speeds. It begins with a discussion of the physics of unsteady flows and an explanation of lift and thrust generation, airfoil flutter, gust response and dynamic stall. This is followed by an exposition of the four major calculation methods in currents use, namely inviscid-panel, boundary-layer, viscous-inviscid interaction and Navier-Stokes methods. Examples are provided to demonstrate the use of each method and panel and interactive boundary layer codes are included on the CD-ROM. Undergraduate and graduate students, teachers, scientists and engineers concerned with aeronautical, hydronautical and mechanical engineering problems will gain understanding of the physics of unsteady low-speed flows and an ability to analyze these flows with modern computational methods.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2005

Количество страниц: 226

Добавлена в каталог: 24.03.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Airfoil chord      2
Algebraic turbulence model      164 200 201
Angle of attac      7 8 13
Baldwin — Lomax (BL) turbulence model      167 199 201
Bernoulli equation      26 28 39 50 51
Block elimination method      71
Blowing velocity      64
Boundary layer      2 4 5 6 16 28 31 59 77 94 96 98 107 108 127 136
Boundary layer equations      28 59 61 62 63 65 66 86 93 95 96 107 110 155
Cebeci — Smith (CS) turbulence model      59 164
CFL condition      82 83 103
Circular frequency      2
Circulation      5 6 35 38 39 49 50
Closure problem      25
Compressible flow      183 184 193 194 198
Conservation equations      21 24 157 158
Continuity equation      22 24 25 26 27 156 158 166 178
Direct numerical simulation (DNS)      24
Displacement thickness      59 62 63 102 103 115 116 117 119 121 123 124 125 132 133 134 136 137 138 139 146 147 148 149 151 152 168
Dissipation function      157
Dynamic stall      16 17 18 150 153 155 194 195 197 200 203 204 206 207 208
Eddy viscosity      59 60 61 96 164 165 166 167 168 171 201
energy equation      156 158
Ensemble average      24
Euler equation      26 177 184
Flow reversal      82 101 107 108 111 114 115 120 122 147 204
Flow separation      16 62 93 99 100 107 108 109 114 115 127 128 129 132 140 150
Flow tangency condition      34 36 42
Fluid particle      50 51
Flutter      10 12 13 14 18 54 56
Gust response      15 57
Hilbert integral      63 72 73 127
Hysteresis      18 19 146 197 198 199 200 201 202 203 205 209 210
Incompressible flow      26 31 100 101 174 193 195 198
Influence coefficient      34 36 40 42 44 45 46
Interactive boundary layer theory      4 16 27 63 142 143 144 145
Intermittency      60 61 167 202
Inviscid flow equations      26 28 31 64
Irrotational flow      26 33 35 63
Johnson — King (JK) turbulence model      165 172 201
Jones — Launder ($k-\varepsilon$) turbulence model      169 200
Keller’s box method      66 85
Kelvin — Helmholtz theorem      1 6 38 49
Kuessner’s function      15 16
Kutta condition      3 35 37 39 64
Kutta — Joukowski law      5 6
Laminar flow      25 27 28 60 65 93 95 96 100 101 108 110 193 198
Laplace’s equation      2 27 34
Laplacian operator      23
Lift generation      5 6 49
Lifting-line theory      7
Menter (SST) turbulence model      169 172
Mixing length      163
Momentum equation      22 24 25 59 60 68 156 158 166 178
Navier — Stokes equations      2 4 5 6 19 21 22 23 24 25 26 27 28 155 156 159 160 161 174 177 193
Newtonian fluid      23 25
Newton’s method      66 68 81 84 112
Newton’s second law of motion      6 8 22
Normal stress      22 23
Panel method      4 10 31 32 33 34 38 46 47 49 51 53 56 64 136
Parabolized Navier — Stokes equations      25 26
Path line      49 50
Perfect gas law      157
Pitch damping      14 56
Pitch motion      10 11 13 14 19 54 55 56
Plunge motion      8 9 10 13 15 51 54 55 56
Power extraction      9 53
Reduced frequency      2 54 138 143
Reynolds number      6 16 19 27 61 99 101 120 123 124 127 128 130 132 136
Reynolds stress      25
Reynolds-averaged Navier — Stokes equations (RANS)      21 24 28
RNG turbulence model      170 201
Separation bubble      16 62 108 109 114 127 201 202
Shear stress      22 23 61 62 99 116 117 118 121 122 123 124 125 165 166 178
Skin friction      76 77 94 102 103 128 129 130 131 133 134 137 149 152 153
Source flow      33 34 35 36 38 40 41 44
Spalart — Allmaras (SA) turbulence model      168
STALL      16 108 132 134 150
Stall flutter      18
Starting vortex      1 2 5 7 9 13 15 49 50 54
Step gust      15
Strain tensor      23
Streak line      49 50
Stream function      175 194
streamline      26 49 50 51 195 198
Stress tensor      25 157 158 163
Strouhal number      94
Substantial derivative      22 24
Suction velocity      64
Thin-layer Navier — Stokes equations      25
Thrust generation      8 53 54
Transition      59 61 108 125 126 127 128 130 131 132 169 194 201 204 205 206
Transpiration velocity      28
Turbulence model      108
Turbulent flow      24 25 27 28 59 60 65 96 109 125 128
Velocity potential      27 45 46
Viscous force or stress      22 159 178
Viscous-inviscid interaction method      4 5 136 142 143 144 145
Vortex      2 6 7 8 9 13 16 31 33 34 35 36 38 39 40 41 53 54 150 206 207
Vortex street      9 53 206 207
Vortical wake      2 3 14 206 207
Vorticity      5 6 26 140 167 171 175 176 177 194 195 196 197
Wagner’s function      3 15 16 51
Wave length      2 3 14
Wilcox ($k-\omega$) turbulence model      169 170 171
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте