|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Cantor set
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Sornette D. — Critical phenomena in natural sciences | | Bartle R.G. — The Elements of Real Analysis | 51 | Rudin W. — Fourier Analysis on Groups | 99 | Hunter J.K., Nachtergaele B. — Applied Analysis | 16 | van der Dries L. — Tame topology and O-minimal structures | 1 | Rudin W. — Principles of Mathematical Analysis | 41, 81, 138, 168, 309 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 20 | Shorack G.R. — Probability for statisticians | 108, 114 | Kitchens B.P. — Symbolic dynamics: one-sided, two-sided and countable state markov shifts. | 2, 4 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 79.D | Rockett A.M., Szusz P. — Continued Fractions | 72 | Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 276, 280 | Apostol T.M. — Mathematical Analysis | 180 (Ex. 7.32) | Seebach J.A., Steen L.A. — Counterexamples in Topology | 57 | Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 85 | Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 25, 120, 129, 227, 300 | Connes A. — Noncommutative geometry | IV.3.$\varepsilon$ | Rudin W. — Real and Complex Analysis | 168 | Goldstein H., Poole C., Safko J. — Classical mechanics | 516, 519, 522 | Katznelson Y. — Introduction to Harmonic Analysis | 188, 231 | Barnsley M. — Fractals Everywhere | 151, 156, 165, 182, 265, 275 | Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 122, 130, 137 | Biscamp D. — Magnetohydrodynamic turbulence | 263 | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 38 | Brin M., Stuck G. — Introdution to dynamical system | 7, 16, 18, 25, 182, 196, 204 | Grimmett G. — Percolation | 385 | Hand L.N., Finch J.D. — Analytical Mechanics | 464—468 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 447, 450 | Rumely R.S. — Capacity Theory on Algebraic Curves | 347 | Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 42—48, 75, 176, 229, 238, 254, 257, 387, 388, 434, 436, 581 | Kurtz D.S., Swartz C.W. — Theories of Integration | 79 | Coornaert M., Papadopoulos A. — Symbolic Dynamics and Hyperbolic Groups | 20 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 56 | Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 106, 124, 490 | Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 96 | Afraimovich V., Ugalde E. — Fractal Dimensions for Poincare Recurrences | 12 | Bekkali M. — Topics in Set Theory: Lebesgue Measurability, Large Cardinals, Forcing Axioms, Rho-Functions | 1 | Searcid M. — Metric Spaces | 39, 44, 51, 153, 168, 179, 180, 198, 201, 207, 281 | Hensley D. — Continued Fractions | 145, 213 | Broer H.W., Huitema G.B. — Quasi-Periodic Motions in Families of Dynamical Systems, Vol. 164 | 11, 36 | Robert A. — Non-Standard Analysis | Exercise 3.5.18 | Block L.S., Coppel W.A. — Dynamics in One Dimension | 34 | Hrbacek K., Jech T. — Introduction to Set Theory | 185 | Pickover C.A. — Mobius Strip: Dr. August Mobius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology | 98 | Kappraff J. — Beyond Measure: A Guided Tour through Nature, Myth, and Number | 404—405, 417—419, 424—425, 436, 508, 544, 555 | Fradkin E. — Field theories of condensed matter systems | 260 | Dugunji J. — Topology | 22, 104, 112 | Ott E. — Chaos in dynamical systems | 43, 65, 71—74, 172, 316 | Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 111 | Smith P. — Explaining chaos | 25—26, 49, 69, 97, 102, 171 | Berberian S.K. — Fundamentals of Real Analysis | 99 | Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 92, 109, 119 | Thomson B.S. — Real Functions | 64—65, 206, 210 | Gleick J. — Chaos. Making a new science | 92—94, 93, 99 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 169 | Wapner L. — The Pea and the Sun: A Mathematical Paradox | 127, 183 | Devaney R.L. — An introduction to chaotic dynamical systems | 37, 187, 270 | Geroch R. — Mathematical physics | 255 | Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 20 | Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 136 | Chorin A.J. — Vorticity and turbulence | 59 | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 604, 664 | Shreve S.E. — Stochastic Calculus for Finance 2 | 528 | Lang S.A. — Undergraduate Analysis | 224 | West Th. (Ed) — Continuum Theory and Dynamical Systems, Vol. 149 | 263 | Makarov B.M. — Selected Problems in Real Analysis | 6, 38, 90, 94, 99, 102 | Boas R.P. — A Primer of Real Functions | 39—42, 44 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 15, 299 | Kaczor W.J., Nowak M.T. — Problems in Mathematical Analysis ll: Continuity and Differentiation, Vol. 2 | 146 | Lang S. — Real Analysis | 47 | Ito K. — Encyclopedic Dictionary of Mathematics | 79.D | Taylor J.C. — An Introduction to Measure and Probability | 8 | Rudin W. — Real and complex analysis | 58, 145 | Stahl H., Totik V. — General Orthogonal Polynomials | 104 | Sparrow C. — The Lorenz equations: bifurcation, chaos, and strange attractors | 21, 36, 37, 205, 231 | Holden A.V. — Chaos | 19, 59, 72, 78, 87, 88, 89, 121, 223, 224, 299 | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 142 | Hilborn R.C. — Chaos and nonlinear dynamics | 344—345 | Bogachev V.I. — Measure Theory Vol.2 | I: 30 | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction | 202, 203 | Strichartz R.S. — The way of analysis | 95, 99, 633, 641, 652, 554, 659 | Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 52 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 13.5 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 159, 160 | Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | see “Set” | Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | 63, 374—375, 588 | Munkres J. — Topology | 178 | Keller K. — Invariant Factors, Julia Equivalences and the (Abstract)Mandelbrot Set | 49 | Billingsley P. — Probability and Measure | 1.6, 1.9, 3.16, 423, 12.8 | Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 21, 24 | Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 398, 405, 413 | Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 35 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 319—321, 323, 336 | Krantz S.G. — Handbook of Real Variables | 48 | Simmons G.F. — Introduction to topology and modern analysis | 67 | Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 35, 79 | Abramsky S., Gabbay D.M., Maibaum T.S.E. — Handbook of Logic in Computer Science: Volume 5: Logic and Algebraic Methods | 445, 451 | Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 583, 758 | Conway J.B. — A Course in Functional Analysis | 292 | Ash R.B. — Real Variables with Basic Metric Space Topology | 76—80 | Pears A.R. — Dimension theory of general spaces | 150 | Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 21 | Lackzovich M. — Conjecture and Proof | 87 | Saxe K. — Beginning functional analysis | 30, 34 | Kigami J. — Analysis on Fractals | 15, 39, 66 | Grasman J. — Asymptotic methods for relaxation oscillations and applications | 114, 156, 184, 193 | Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 49 | Moise E.E. — Geometric topology in dimensions 2 and 3 | 83 | Attouch H., Buttazzo G., Michaille G. — Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization | 122 | Haller G. — Chaos Near Resonance | 43 | Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 97, 295 | Fuchs D., Tabachnikov S. — Mathematical omnibus: Thirty lectures on classical mathematics | 363 | Durrett R. — Probability: Theory and Examples | 8 | Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 152 | Bridges D.S. — Foundations Of Real And Abstract Analysis | 39 | Beardon A.F. — Iteration of rational functions | 21, 227, 250, 266 | Browder A. — Mathematical Analysis: An Introduction | 149, 201, 248 | Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 88, 110, 229, 232, 258, 266, 285—286, 332—334 | Ilachinski A. — Cellular automata. A discrete universe | 20, 47 | Adler R.J. — Geometry of random fields | 188, 233 | Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | 86, 227, 233, 402 | Aliprantis C. — Principles of real analysis | 41, 140 | Dym H., McKean H.P. — Fourier Series and Integrals | 8 | Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 14, 32, 71, 115 | Munkres J.R. — Topology: A First Course | 177 | Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 16 | Kuratowski K. — Introduction To Set Theory & Topology | 183 | Grimmett G., Welsh D. — Probability: An Introduction | 102 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 129, 143, 147, 149 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 604, 664 | Jacob C. — Illustrating Evolutionary Computation with Mathematica | 475 | Lang S. — Undergraduate analysis | 224 | Kuttler K.L. — Modern Analysis | 169 | Donoghue W.F. — Distributions and Fourier transforms | 34 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 301, 304, 305, 310, 311 | Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 180 | Candel A., Conlon L. — Foliations I | 18, 104, 108, 275, 276, 283, 291 | Wiggins S. — Chaotic transport in dynamical systems | 61, 76, 185 | Bear H.S. — A Primer of Lebesgue Integration | 39, 60 | Biskamp D. — Magnetohydrodynamic Turbulence | 263 | Strang G. — Introduction to Applied Mathematics | 504, 510 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 447, 450 | Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 362 | Hoover W.G. — Molecular Dynamics | 107 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 467, 471 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 776 | Beauzamy B. — Introduction to Banach spaces and their geometry | 127 | Geroch R. — Mathematical physics | 255 | De Barra G — Measure theory and integration | 24, 37,60, 157, 202, 227 | Heinonen J. — Lectures on Analysis on Metric Spaces | 67, 108, 118, 121 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 8 | Marotto F. — Introduction to Mathematical Modeling Using Discrete Dynamical Systems | 303, 304, 311 | Comfort W.W., Negrepontis S. — The Theory of UltraFilters | 133 | Cheney W. — Analysis for Applied Mathematics | 46 | Falconer K. — Fractal geometry: mathematical foundations and applications | see also "Middle third Cantor set" | Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 61 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 41, 45, 76, 116, 117, 153, 272, 273, 284 | Geroch R. — Mathematical physics | 255 | Apostol T. — Mathematical Analysis, Second Edition | 180 | Larson L.C. — Problem Solving Through Problems | 3.4.6 | Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 185 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 2, 5, 15, 71—73, 252, 255 |
|
|