Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ott E. — Chaos in dynamical systems
Ott E. — Chaos in dynamical systems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Chaos in dynamical systems

Àâòîð: Ott E.

Àííîòàöèÿ:

This book is an in-depth and broad text on the subject of chaos in dynamical systems. It is intended to serve both as a graduate course text for science and engineering students, and as a reference and introduction to the subject for researchers. Within the past decade scientists, mathematicians and engineers have realized that a large variety of systems exhibit complicated evolution with time. This complicated behaviour, called chaos, occurs so frequently that it has become important for workers in many disciplines to have a good grasp of the fundamentals and basic tools of the emerging science of chaotic dynamics. The author's style is pedagogic, and the book will be of value both as a graduate text and also as a reference work for researchers in science and engineering needing to understand this important new subject. Homework problems are also included throughout the book.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Äèíàìè÷åñêèå ñèñòåìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1993

Êîëè÷åñòâî ñòðàíèö: 385

Äîáàâëåíà â êàòàëîã: 28.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$D_q$      79
Abrupt bifurcation to chaotic scattering      301
Accessible      295
Action-angle variables      221—2
Anderson localization      207 359
Anomalous diffusion      264
Arnold diffusion      257
Arnold tongues      194 266
Attractor      10—14
Attractor merging crisis      277
Autonomous Fermi system      243—245
Baker’s map      107
Basin boundary (see also fractal basin boundary)      278
Basin boundary metamorphosis      294—299
Basin of attraction      33 54
Belousov — Zhabotinskn reaction      63—64
Bernoulli shift      27
Bernoulli system      261 262
Bifurcation      44
Bifurcation diagram      39
Bifurcation to chaotic scattering      299—303
Billiard      258—260 335
Binomial coefficient      76
Blinking vortex flow      247
Boundary crisis      277—283
Box-Counting Dimension      69—75 195
C-system      261—262
Cannonical variables      213—214
Cantor set      43 65 71—74 172 316
Capacity      69
Cat map      128—129 257
Center subspace      118
Chaos      2—5 132
Chaotic scattering      129 166—176 266 299—303 360—361
Chaotic transient      75 146 151—152 266 278 291—294
Circle map      189—199
Classical limit      334
Conjugate maps      56 67
Conservative      10 12
Constant of the motion      220
Continued fraction      239
Controlling chaos      145—148
Correlation dimension      90
Correspondence principle      334
Couette — Taylor flow      90—92 185—186 196—197
Crisis      277—291
Crisis induced intermittency      283—291 303
Critical crisis exponent      279—280
Critical point      37
Cumulative density      337
Decay time      328 333
Degrees of freedom      208 209
Delay coordinates      19—21 93—97
Delay time      17 361
density      31 51 73
Density of states      336—338 345—351
Devil’s staircase      195
Diffusion      241—243 356
Dissipation      11—12
Distribution of finite time Lyapunov exponents      322—326
Doubling transformation      270
Dripping faucet      4 64
Duffing equation      3
Dynamical systems      6—10
Eikonal      252
Elliptic      219 228 232
Embedding      93—97
Energy level spacings      339—344
Energy level spectra      336—351
entropy      138—144 310 322—323
Ergodic      55 261 262
Ergodic theorem      55
Exterior dimension      98—100
Fat fractal      97—100 195 228
Final state sensitivity      158—161
Finite time Lyapunov exponents      322—326
First-order phase transition      see “Phase transition”
Floquet form      119
Floquet’s theorem      354
Flow      6
Forced damped pendulum      7 153
Fractal      13
Fractal basin boundary      129 153—166 266
Fractal dimension      13 69—93
Free energy      310
Frequency locking      191 193 194
Frobenius — Peron equation      51
Gaussian orthogonal ensemble (GOE)      341—343
Gaussian unitary ensemble (GUE)      341—343
Generalized baker’s map      75—78 81—86 133 140—142 307—309 315—316 321 332
Generating function      213
Generic bifurcation      45—47 266 303
Generic intersection      95 96 230
Geometrical optics      346
Golden mean      199 239
Gram — Schmidt orthogonalization      148
Green function      344
Gutzwiller trace formula      see “Trace formula”
Harmlton — Jacobi equation      223
Harmltonian systems      208—265
Hausdorff dimension      100—103 313
Helmholtz equation      335 342
Henon map      13 16 17
Heteroclinic intersection      124
Heteroclinic tangency crisis      280—1
Homoclinic intersection      124
Homoclinic orbit      292—3
Homoclinic tangency crisis      280—281
Hopf bifurcation      201—202 266 273—274 293
Horseshoe      108—114 162
Hydrogen atom      356
Hyperbolic      124—129 174 219 228 232 301 318
Hyperbolic range      313
Hyperbolic with reflection      219
Ikeda map      278—279
Impact parameter      166
Incommensurate      185
Information dimension      79 134 176
Integrable      220—224 235
Interior crisis      277 283
Intermittency      272—277 303
Intermittent bursting      284
Intermittent switching      284
Internal energy      310
Invariant density      51
Invariant measure      54
Invertible      8—9
Involution      220—221
Isomorphism      144
Jacobian matrix      115
K-system      261 262
KAM      191 224—229 267 303
Kicked double rotor      146—147 155—156
Kicked rotor      216 254
Lebesgue measure      65
Level repulsion      343—344
Limit cycle      11
Liouville’s theorem      210—211
localization      see “Anderson localization”
Localization length      358 359
Logistic map      8 31—44 266 268
Lorenz system      57—9 189 291—294
Lower hybrid wave      253—255
Lyapunov dimension      134
Lyapunov exponent      55 129—138 176 322—326
Lyapunov number      see “Lyapunov exponent”
Lyapunov partition function      316—322 327 330—331
Magnetic field lines      249—251
Magnetoelastic ribbon      289
MAP      7
Measure      31
Metamorphosis      see “Basin boundary metamorphosis”
Metric entropy      138—143 322—323
Mixing      256 261 262
Mixing, in fluids      246—251
Multifractal      88 305—333
Multifractal measure      305
N-frequency quasipenodicity      184—185 189 200—204 222
N-ton      223
Natural density      31
Natural measure      31 78 326
Noise      92 93 272—273 277 290 360
Nonattracting chaotic sets      129 151—183
Noninvertible      8—9 203
One-dimensional maps      23—68 266
Orbit      6
Partition function      327 330—331
Pendulum      see “Forced damped pendulum”
Period doubling bifurcation      34—36 45 48 273—274
Period doubling cascade      37—41 238 266—272
Period three      39—44
Period three window      40
Periodic orbits partition function      327 330—331
Periodic orbits sum rule      327 351
Phase transition      267 310—313 333
Planck’s constant      334
Poincare recurrence theorem      214
Poincare surface of section      see “Surface of section”
Poincare — Birkhoff theorem      228
Poincare — Cartan theorem      212—213 222
Poincare’s integral invariant      211
Pointwise dimension      86 306
Poisson distribution      339
Pole placement      146
Power law correlations      264
Power spectra      185—186 199—200 272 277
Probability measure      53
q-order entropy spectrum      322—323
Quantum chaos      334—362
Quantum chaotic scattering      360—361
Quasipenodicity      184—207 266
Random matrices      340—342 351
Random walk      264
Ray equations      251—252
Rayleigh — Benard convection      4 275
Rays      346—350
Regular scattering      168
Renormalrzation group      199 240 267—272 277 303
Resonant ton      227 229—235
Rotation number      188 191 199
Routes to chaos      5
Saddle-focus      294
Saddle-node bifurcation      48 273—276
Sarkovskn’s theorem      49
Scars      353—354
Scattering angle      166
Scattering function      166
Schrodinger’s equation      335 336
Self-similar      72
Semiclassical      334
Shadowing      18 66 126—127
Shift      112
Shift of finite type      114
Singularity index      305
Singularity spectrum      305—313
Small denominators      191
Spectral rigidity      341—342
Stability coefficient      30
Stable      30 17
Stable manifold      122—129 153 172 176 278—279 281
Stable subspace      118
Stadium billiard      260 353
Standard map      217 235—237
Stationary phase      349
Stirling’s approximation      83
Strange Attractor      13 69—107
Strange nonchaotic attractor      205
Stream function      246
Subcritical Hopf bifurcation      207 273—274
Supercritical Hopf bifurcation      202
Superstable      30 37 268
Surface of negative geodesic curvature      260—261
Surface of section      9 10 12
Symbolic dynamics      74 75 108—114
Symplectic      209—213
Tangent bifurcation      44 45
Tangent space      124
Tangent vector      124
Temperature      310
Tent map      23—25
Thermodynamics      309
Three wave coupling      59—62
Time delay      170 361
Time reversal symmetry      173 183 339—341
Time T map      10 215
Tokamak      249—251 255
Topological entropy      138 143—144 322—323 327
Topologically conjugate      144
Trace formula      344—351
Trajectory      6
Transient lifetime      279
Transitive      113
Twist map      230
typical      78
Uncertainty exponent      98 99 159
Unitary      357
Universal      38 39 40 267
Unstable      30 117
Unstable manifold      122—129 172 176 281
Unstable subspace      118
Unstable-unstable pair bifurcation      283
Van der Pol equaiion      12
Volume preserving      10
wavefunction      335 352—354
Weyl formula      338
Window      40 266 303
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå