Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Beauzamy B. — Introduction to Banach spaces and their geometry
Beauzamy B. — Introduction to Banach spaces and their geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Banach spaces and their geometry

Автор: Beauzamy B.

Аннотация:

Since the first edition of this well-known text was published in 1982, significant progress has been made in the local theory of Banach Spaces. This second edition has therefore been brought up to date by the addition of a completely new section devoted to this topic, as well as various other revisions, an expanded bibliography and a new appendix.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1982

Количество страниц: 308

Добавлена в каталог: 11.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$G_{\delta}$-set      9
$\mathds{C}$-symmetric set      32
Admissible sequence (of signs)      265
Affine subspace      29
Algebraic basis      10
B-convexity      225
Baire space      7
Balanced set      32
Banach — Stone Theorem      130
Basic sequence      80
Basis constant      83
Bauer's Maximum Principle      123
Bessel — Parseval Inequality      73
Best approximation projection      69
Biorthogonal sequence      83
Bounded set      35
Boundedly complete basis      86
Cantor set      127
Complemented subspace      42
Convergence (of a series)      79
Coordinate functionals      83
coordinates      81
Cotype q-Rademacher      170
Dentable set      172
Dunford — Pettis property      134
Eberlein — Smulian theorem      61
Equi-integrability      153
Equivalent sequences      108
Finite representability (for operators)      241
Finite representability (for spaces)      217
Finite Tree Property (for operators)      241
Finite Tree Property (for spaces)      226
First category (set of)      13
Gauge of a convex set      30
Gram — Schmidt orthogonalization process      74
Graph (of an operator)      11
Haar system      138
Helly's Condition      52
Infinite Tree Property      277
Involution      99
James'condition (for non-reflexivity)      51
Khintchine inequalities      141
Krein — Milman Property      172
Krein — Milman theorem      125
Lindenstrauss' duality formulae      207
Martingales      274
Meager set      13
Monotone basis      83
Normal convergence (of a series)      80
Normal structure      212
Open mapping theorem      13
Orthogonal (of a subspace)      39
Orthogonal family      72
Orthogonal projection      71
Orthonormal basis      72
Orthonormal family      72
Pelczynski's decomposition method      113
Positively homogeneous      19
Products of Banach spaces      102
Projection      42
Quotient space      42
Rademacher functions      140
Radon — Nikodym property      171
Second Category (set of)      13
Separating hyperplane      32
Sequential Cauchy Criterion      161
Shrinking basis      86
Shur Property      118
Square      255
Stationary martingale      275
Subadditive functional      19
Supporting hyperplane      126
Transpose (of an operator)      38
Trivial ultrafilter      3
Type p-Rademacher      169
Unconditional basis constant      89
Unconditional convergence      80
Unconditionally monotone basis      89
Uniformly convexifiable space      198
Uniformly convexifying operator      241
Vitali — Hahn — Saks Theorem      160
Walsh system      140
Weak isomorphism      40
Weakly sequentially complete space      161
Zorn's Axiom      20
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте