Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 36 |
Bartle R.G. — The Elements of Integration | 60 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 469 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 8, 91 |
Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 67, 69, 74, 75 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 53 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 67 |
Chung T.J. — Computational fluid dynamics | 256 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | see “B-space” |
Lang S. — Algebra | 475 |
Evans L.C. — Partial Differential Equations | 241, 249, 635 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 147—148, 198 |
Heyde C.C. — Quasi-likelihood and its application: a general approach to optimal parameter estimation | 147 |
Roberts A.W., Varberg D.E. — Convex Functions | 47 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 531, 533, 534 |
Bochner S., Martin W.T. — Several Complex Variables | 117 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 455 |
Rudin W. — Real and Complex Analysis | 95, 331 |
Georgescu A. — Asymptotic Treatment of Differential Equations | 236 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 351 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 267 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 455 I |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 3, 35 |
Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 94 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 152 |
Douglas R.G. — Banach algebra techniques in operator theory | 2, 1—31 |
Loeve M. — Probability Theory (part 2) | 81 |
Pugovecki E. — Quantum mechanics in hilbert space | 30 |
Adams R.A. — Sobolev Spaces | 4 |
Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 216 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 18 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 19 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 338, 340, 393, 399, 432, 435, 437, 516 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 349 |
Kuchment P. — Floquet theory for partial defferential equations | 22 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 312 |
Gorenflo R., Vessella S. — Abel Integral Equations: Analysis and Applications | 72 |
Bogachev V.I. — Measure Theory Vol.1 | 240 |
Liao X., Wang L., Yu P. — Stability of Dynamical Systems, Vol. 5 | 297, 470, 547, 663 |
Halmos P.R. — Hilbert Space Problem Book | 8, 23, 27, 52, 170 |
Carmona R. — Practical Time-Frequency Analysis | 142 |
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 3, 4, 9, 10, 12, 17, 21, 370, 394, 579 |
Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 13. |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 196 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 158, 183, 219 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 629 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 30 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 1 |
Jahn J. — Introduction to the Theory of Nonlinear Optimization | 243 |
Bekkali M. — Topics in Set Theory: Lebesgue Measurability, Large Cardinals, Forcing Axioms, Rho-Functions | 103 |
Hensley D. — Continued Fractions | 54, 87, 162, 167, 207 |
Gohberg I., Goldberg S. — Basic Operator Theory | 194 |
Kilbas A., Srivastava H.M. — Theory and Applications of Fractional Differential Equations | 4, 5, 360—361 |
Aliprantis Ch.D. — Positive Operators | 149 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 3, 4, 12 |
Dugunji J. — Topology | 415 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 67 |
Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 31 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 9 |
Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 180 |
Berberian S.K. — Fundamentals of Real Analysis | 318, 461 |
Pugh C.C. — Real Mathematical Analysis | 285 |
Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 8, 19, 92, 323, 326 |
Morris S.A. — Topology without tears | 118 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1088—1091, 1159, 1178 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 81 |
Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 1, 5, 6, 206 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 67 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 14 |
Wilansky A. — Modern Methods in Topological Vector Spaces | 27 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 44, 49, 92, 93, 207, 208, 226 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.5(21) |
Royden H.L. — Real Analysis | 116, 182 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $67^1$ |
Eschrig H. — The Fundamentals of Density Functional Theory | 110 |
Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 112, 120, 133 |
Rudin W. — Functional analysis | 4 |
Lang S.A. — Undergraduate Analysis | 143 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 18, 19 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 17, 127 |
Royden H.L. — Real Analysis | 116, 182 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 282 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1088—1091, 1159, 1178 |
Lang S. — Real Analysis | 49 |
Taylor J.C. — An Introduction to Measure and Probability | 146 |
Shiryaev A.N. — Probability | 261 |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 397, 407 |
Borovkov A.A. — Ergodicity and Stability of Stochastic Processes | 94, 108 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 37 |
Bichteler K. — Integration - a functional approach | 27, 29, 106 |
Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | B/1 |
Rudin W. — Real and complex analysis | 95 |
Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 60, 62, 292, 370 |
Kress R., Gehring F.W. — Numerical Analysis | 40 |
Dieudonne J. — Foundation of Modern Analysis | 5.1 |
Duffie D. — Security Markets. Stochastic Models | 61 |
Stakgold I. — Green's Functions and Boundary Value Problems | 261 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1088—1091, 1159, 1178 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 70 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 36 |
Weir A.J. — Lebesgue Integration and Measure | 221 |
Serre J.-P. — Lectures on the Mordell-Weil Theorem | 29, 88 |
Goldber M.A. (ed.) — Numerical Solution of Integral Equations | 73—74, 76 |
Bogachev V.I. — Measure Theory Vol.2 | I: 249 |
Strichartz R.S. — The way of analysis | 355, 377, 670 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 140 |
Schechter M. — Spectra of partial differential operators | 1 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 213—215, 243, 438—439 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 30 |
Köthe G. — Topological vector spaces I | 126 |
Hannan E. J. — Multiple time series | 504 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 145 |
Beckenbach E.F. (editor), Polya G., Lehmer D.H. and others — Applied combinatorial mathematics | 432, 453 |
Kirillov A.A. — Elements of the Theory of Representations | 37 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 32 |
Husain T., Khaleelulla S.M. — Barrelledness in Topological and Ordered Vector Spaces | 13 |
Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 81 |
Morimoto M. — Introduction to Sato's hyperfunctions | 244 |
Radjavi H., Rosenthal P. — Simultaneous Triangularization | 130 |
Hu S.-T. — Elements of real analysis | 214 |
Berinde V. — Iterative Approximation of Fixed Points | 7, 91, 102, 104, 107, 128, 129, 132, 142, 161, 180, 184, 212 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 1 |
Cercignani C. — Theory and Application of the Boltzman Equation | 404 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 236 |
Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 25 |
Feller W. — Introduction to probability theory and its applications (Volume II) | 257, 350, 487 (see also “Hilbert space”) |
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 333, 403 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 15 |
Janich K. — Topology | 26 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 891, 904 |
Corduneanu C., Gheorghiu N., Barbu V. — Almost Periodic Function | 153 |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 47, 92, 129, 130, 155, 376 |
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 75 |
Baker G.A., Gammel J.L. — The Padé Approximant in Theoretical Physics | 188 |
Shafer G., Vovk V. — Probability and finance | 118 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 131 |
Simmons G.F. — Introduction to topology and modern analysis | 82, 212 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 128 |
Conway J.B. — A Course in Functional Analysis | 65 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 294 |
Saxe K. — Beginning functional analysis | 23 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 51 |
Dieudonne J. — Foundation of Modern Analysis | 5.1 |
Korevaar J. — Tauberian Theory: A Century of Developments | 85 |
Haller G. — Chaos Near Resonance | 393 |
Stewart G.W., Sun J. — Matrix perturbation theory | 60, 98 |
Nash C. — Differential Topology and Quantum Field Theory | 48, 171 |
Eringen A.C. (ed.) — Continuum physics (vol. 4) Polar and Nonlocal Field Theories | 216 |
Ya Helemskii A., West A. — Banach and locally convex algebras | 16 |
Ladyzhenskaya O.A. — The Boundary Value Problems Of Mathematical Physics | 2 |
Rektorys K. — Survey of applicable mathematics | 1003-4 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 178 |
Antoulas A.C. — Approximation of Large-Scale Dynamical Systems | 123 |
Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 387 |
Sattinger D.H. — Group Theoretic Methods in Bifurcation Theory | 18 |
Lang S. — Algebra | 475 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 205 |
Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 50, 74, 82, 88, 89, 124, 125, 131, 139, 145, 160, 163, 164, 167, 187, 188, 201, 235, 286, 306, 307, 341, 363, 364, 390, 407, 414, 428, 493, 499 |
Goffman C., Pedrick G. — First course in functional analysis | 71 |
Valentine F.A. — Convex Sets | 203 |
Kreyszig E. — Introductory functional analysis with applications | 58 |
Hu S.T. — Introduction to general topology | 205 |
Argyros I. — Computational Theory of Iterative Methods | 3 |
Schechter M. — Operator methods in quantum mechanics | 219 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 103 |
Aliprantis C. — Principles of real analysis | 218 |
Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 210 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 28 |
Pasquale P. — Linear spaces of analytic functions | 11 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 2 |
Dembo A., Zeitouni O. — Large deviations techniques and applications | 55, 130, 142, 223, 229, 244, 292, 312 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.2 | 655 |
Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 119, 121, 400 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 6.3. 84 |
Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 1 |
Douglas R.G. — Banach algebra techniques in operator theory | 2, 1—31 |
Loomis L.H. — An introduction to abstract harmonic analysis | 13 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 202 |
Lang S. — Undergraduate analysis | 143 |
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 2, 11, 42 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 48 |
Kuttler K.L. — Modern Analysis | 205 |
Stakgold I. — Green's functions and boundary value problems | 261 |
Katz V.J. — A History of Mathematics: An Introduction | 827 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 84 |
Bachman G. — Elements of Abstract Harmonic Analysis | 2 |
Audichya A. — Mathematics: Marvels and milestones | 104, 105 |
Beckenbach E.F. (ed.) — Applied Combinatorial Mathematics | 432, 453 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 1003—1004 |
Loomis L.H., Sternberg S. — Advanced calculus | 217 |
Lane S.M. — Mathematics, form and function | 436 |
Kuttler K. — Notes for Partial Differrential Equations | 75 |
Howes N.R — Modern Analysis and Topology | 340 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 338, 340, 393, 399, 432, 435, 437, 516 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 10 |
Golberg M.A. — Numerical Solution of Integral Equations | 73—74, 76 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 178 |
Zeidler E. — Oxford User's Guide to Mathematics | 264, 1144 |
Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 101, 254 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 90 |
Collatz L. — Functional analysis and numerical mathematics | 56, 58 |
Vidyasagar M. — Nonlinear systems analysis | 13 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 2 |
Lee A. — Mathematics Applied to Continuum Mechanics | 563 |
John F. — Partial Differential Equations | 49, 118, 237 |
Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups | 14, 48 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 8, 99, 120 |
Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 15 |
Robertson A.P., Robertson W. — Topological vector spaces | 60 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 135—138 |
Mitrinović D.S., Vasić P.M. — Analytic inequalities | 44, 65, 311, 379 |
Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2) | 147 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 272 |
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 119 |
Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 216 |
Cheney W. — Analysis for Applied Mathematics | 10 |
Lang S. — Cyclotomic Fields II (Graduate Texts in Mathematics) | 105 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 2 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 28 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 332 |
Mac Lane S. — Mathematics: Form and Function | 436 |
Kline M. — Mathematical thought from ancient to modern times | 1088—1091, 1159, 1178 |
Leader S. — The Kurzweil-Henstock integral and its differentials | 328 |
Georgescu A. — Asymptotic Treatment of Differential Equations (Applied Mathematics) | 236 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 40, 102, 129, 143, 252 |