| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | "Finite parts" of an integral      786 "Finite parts" of divergent integrals      740 743
 "Improperly posed" problems      230 — 231
 "Outward" derivative      134
 "Tangential" differentiation;      577; see Interior differentiation Taylor’s theorem
 "Weakly" space-like surface      654
 
  (Bessel’s function of order zero)      694 (F, G) pseudoanalytic function      386
 A priori estimates      see Estimates
 Abel’s integral equation      535
 Adjoint operators      234 — 237 770
 Alfven speed      614
 Alfven waves      613
 Analytic function of two complex variables      501
 Analyticity of harmonic functions      269
 Analyticity of solutions of elliptic equations      501 — 505
 Approximate progressing wave      623
 Arzela’s theorem      310 381
 Asgeirsson’s mean value theorem      744 — 752
 Associated Legendre functions      242
 Asymptotic solutions for a linear hyperbolic system      637 — 642
 Backward ray cone      564 569
 Balayage method of Poincare      296 (ftn)
 Banach space      333 403
 Barrier function(s)      31
 Barrier strong      341 — 343
 Beltrami equations      178
 Beltrami equations solution of      350 — 357
 Bernstein, theorem of      400
 Bessel equation      244
 Bessel function(s)      194 289
 Bessel function(s) integral theorem for      534
 Bessel function(s) of order zero      185
 Bicharacteristic rays      551 730
 Bicharacteristic rays along multiple characteristics      627
 Bicharacteristic rays differentiation along      597 — 599
 Bicharacteristic strip(s)      558 583
 Bicharacteristics (or bicharacteristic curves)      558 — 559
 Bicharacteristics in hydrodynamics      601
 Bicharacteristics invariance under transformation of independent variables of      562
 Bicharacteristics of a second order differential equation      559
 Bilinear form      770
 Boundary continuity method      336 — 339
 Boundary counter-example of Lebesgue      303 — 305
 Boundary for general elliptic differential equations      320 — 331
 Boundary for Poisson equation      261 ff
 Boundary for the equation of minimal surfaces      see Plateau’s problem
 Boundary for the potential equation      21 — 22
 Boundary in multiply-connected domains      292 293
 Boundary nonlinear      395 — 399
 Boundary space, maximal non-negative      658
 Boundary uniqueness theorems for      320 — 324
 Boundary value problem(s)      222 226 290 357
 Boundary with nonunique solutions      324 — 326
 Branch curves      65
 Branch lines      408
 Branch strip      415
 Brouwer fixed point theorem      403
 Calculus of variations      113 — 131
 Canonical equations      131
 Canonical form      182
 Canonical perturbation theory      130 — 131
 Canonical system of differential equations      107
 Canonical transformation      127 — 129
 Canonically conjugate variables      115
 Capacity      305 — 306
 Cauchy data      408
 Cauchy double integral representation      501 (ftn)
 Cauchy initial uniqueness of solutions      438 — 449
 Cauchy initial value problem      407 — 766 (see also Initial value problem)
 Cauchy method of the Fourier integral      210 — 221
 Cauchy problems      see Initial value problems
 Cauchy — Kowalewski for linear equations      54
 Cauchy — Kowalewski theorem      39 — 56 363 669 670
 Cauchy — Riemann      176 178
 Cauchy — Riemann differential equations      58
 Caustic      673 674
 Caustic curves      83 89
 Caustic surface      123
 Characteristic      see also Bicharacteristic
 Characteristic coordinates      see Characteristics as coordinate curves
 Characteristic, base curve(s)      63 70 411
 Characteristic, basic manifold      138
 Characteristic, condition      136 — 139 412 419 554 555
 Characteristic, cone      591
 Characteristic, cone, in Huyghens’ principle      690
 Characteristic, curve(s)      29  70 158 172 407 411 415
 Characteristic, curve(s), for the general first order differential equation in n independent variables      103 — 105
 Characteristic, curve(s), on an integral surface      414 — 416
 Characteristic, curve(s),for quasi-linear differential equations in n variables      69 70 73
 Characteristic, derivative      136 — 139
 Characteristic, determinant      172
 Characteristic, differential equations, canonical form of      106 — 107
 Characteristic, differentiation      135
 Characteristic, element      410
 Characteristic, form(s)      156 175  412 554 579
 Characteristic, initial value problem(s)      56 450
 Characteristic, initial value problem(s),of the wave equation      644 — 646
 Characteristic, line element      33
 Characteristic, matrix      173 530
 Characteristic, normal cone      582 663
 Characteristic, parameters      427 428
 Characteristic, ray cone, for elastic waves      708
 Characteristic, rays, of a second order equation      559
 Characteristic, sheets, multiple      595 — 596
 Characteristic, speed      430
 Characteristic, strips      77 79 97 103 411 422
 Characteristic, surface(s)      174
 Characteristic, surface(s), as wave fronts      632
 Characteristic, surface(s), in hydrodynamics      600 — 601
 Characteristic, surface(s), in magnetohydrodynamics      613
 Characteristic, surface(s), of a differential operator      579 — 581
 Characteristic, surface(s), of a second order linear equation      557
 Characteristic,condition, interpretation of, in time and space      581 — 583
 Characteristics      55 — 56 170 175 553
 Characteristics as branch elements      82
 Characteristics, as coordinate curves      490 — 507
 Characteristics, as curves of discontinuity      416 — 418
 Characteristics, for quasi-linear systems      176
 Characteristics, for second or er equations in two independent variables      408
 Characteristics, geometry of      552 — 569
 Characteristics, geometry, for higher order operators      577 — 599
 Characteristics, invariance of      423 562 589
 Characteristics, with constant multiplicity      626 — 627
 Clairaut’s equation      27 — 28 37 94
 Classification for equations of second order      181 — 184
 Compactness theorem for harmonic functions      275
 Compatibility condition      60
 Complete, integral      24 — 25 37 84 103
 Complete, progressing wave      623
 Complete, space      403
 Compressible fluids      429 — 437
 Compressible fluids, linearized equations      436 — 437
 Cone      124 — 125 233
 Conoid of dependence      654 730
 Conservation, laws      147 — 153 488
 Conservation, of energy      665
 Conservative operators of first order      653
 Consistency conditions for Cauchy data      472
 Continuable initial conditions      470
 Continuation of a real solution into the complex plane      499 — 507
 Continuation of solutions      505
 Continuity method      336
 Continuous linear functional      771
 Convex set      404
 Convex, hull      589
 Convex, hull,of a local ray cone      589 591
 Convolution of ideal functions      791 — 792
 Crystal optics      599 602 649
 Crystal optics, conical refraction in      628 629
 
 | Crystal optics, solution by method of plane mean values      718 — 727 Cylindrical waves      193 — 194
 Damped waves      192
 Darboux, differential equation for mean values      699 — 700
 Darboux, equation      646 — 647
 Darboux, equation, connection with the wave equation      700 — 703
 Decomposition of ideal functions      781
 Delta function      456 776
 Delta function, as a weak limit      778
 Delta function, decomposition of      730 — 733
 Delta function, homogeneity      791
 Delta function, in polar coordinates      791
 Delta function, three dimensional      696
 Delta function, transformations of      790 — 791
 Derivative, directional      132
 Derivative, normal      133
 Descent, method of      205 — 206 686
 Developable surfaces      10
 Differentiability properties of solutions of boundary value problems      343 — 350
 Differentiation of fractional order      see Fractional differentiation
 Dipole potentials      251
 Dirac equations      179
 Dirichlet, integral      254 681
 Dirichlet, problem      261 — 264 (see also Boundary value problem Green’s Poisson
 Dirichlet, problem for general homogeneous elliptic equations      342
 Discontinuities      585
 Discontinuities, of solutions      486 — 490
 Discontinuities, propagation of      see also Transport equations
 Discontinuities, propagation of, along rays      573 — 574
 Discontinuities, propagation of, for first order systems      624 — 631
 dispersion      191
 Distributions      621 727 740 743 766
 Domain of dependence      209 227 228 438
 Domain of dependence, for crystal optics      723 — 727
 Domain of dependence, for elastic wave equation      711
 Domain of dependence, for hyperbolic equations      649 — 654 (see also Uniqueness theorems)
 Domain of dependence, gaps in      726
 Domain of dependence, in Huyghens’ principle      690
 Domain of determinacy      439
 Domain of influence      227 649
 Double layer potential(s)      251 — 261 298 299
 Dual cone      see Normal cone
 Dual, generating pair      386
 Dual, spaces      793 796
 Duhamel(‘s) integral      512 — 515 691
 Duhamel(‘s) principle      202 — 204 668
 Duhamel(‘s) principle, for systems of first order      204
 Duhamel(‘s) representation for solutions of inhomogeneous problems      552
 Duhamel(‘s) theorem      512 520
 Dupin cyclides      763
 Edge of regression      66
 Edge of regression, of an integral surface      83
 Eiconal      116 — 118
 Eiconal, equation      123 (see also Hamilton — Jacobi equation)
 Elastic constants      707
 Elastic waves      706 — 711
 Elimination from a linear system with constant coefficients      14 — 15
 Elliptic      156 172 174 177  240
 Elliptic, equations, transition to the hyperbolic case through complex domains      499 — 501
 Elliptic, equations, uniformly elliptic      331 — 332
 Elliptic, theta function      200
 Energy conservation of      see Conservation of energy flux
 Energy, identities      662 — 663
 Energy, inequalities      449 655 656 661 662
 Energy, integral(s)      443 447 618 654 665
 Energy, integral(s), for linear symmetric hyperbolic systems of first order      652 — 661
 Energy, integral(s), for single second order equations      659
 Energy, integral(s), method of      642
 Equation of mixed type      161
 Equicontinuous functions, lemma on the convergence of      310
 Estimate(s)      see also Energy inequalities Hamack’s Maximum
 Estimate(s), for solutions of Neumann problem      330 331
 Estimate(s), for solutions of quasi-linear elliptic equations      359
 Estimate(s), of Schauder      331 — 350
 Estimate(s), of Schauder, for solutions of linear elliptic equations      331 — 336
 Estimate(s), of Schauder, interior      333 — 335
 Estimate(s), of Schauder, up to the boundary      335 — 336
 Euler equations      114 — 115
 Euler homogeneity relation      11
 Existence of solutions, (quasi-linear equations)      357 — 362
 Existence of solutions, of boundary value problems      336 — 341
 Existence theorem(s) for solutions of partial differential equations      see Cauchy- Kowalewsky theorem Holmgren
 Existence theorem(s) of ordinary differential equations      30
 Exponential operators      524
 Extremal field      122
 Factorial of a vector      577(ftn) 768
 Families of functions, differential equations for      8 — 12
 Fermat’s principle      117
 Field functions      116
 First boundary value problem      see Dirichlet problem Boundary
 Fixed point method of Leray and Schauder      357 — 362
 Foca, curves      76 83 86 89
 Foca, strip      77 83
 Focussing      673 — 674 736
 Folium of Descartes      588
 Forward ray cone      564 569
 Fourier, integral      210ff
 Fourier, transformation of ideal functions      793 — 795
 Fractional differentiation      523 702
 Fredholm integral equation method      299
 Free, boundary problem(s)      225 — 226 348
 Free, curve(s)      55 172
 Free, initial surface for second order quasi-linear differential equations      554
 Free, strip      410
 Free, surface      173
 Free, surface, for a differential operator      579
 Fresnel surfaces      605
 Functional      see Linear functional
 Fundamental solution(s)      184 — 187 727-
 Fundamental solution(s), for elliptic equations      363 — 367
 Fundamental solution(s), for single equations of second order      740 — 744
 Fundamental solution(s), in crystal optics      723 — 726
 Fundamental solution(s), of the heat equation      21
 Fundamental solution(s), of the potential equation      244
 Fundamental solution(s), of the reduced wave equation      314
 Gaps, theorem on      736 — 737
 Gauss’ integral theorem      252 699
 Gauss’ integral theorem, for ideal functions      787 — 788
 Generalized solution(s)      418 486 669
 Generators      386
 Geodesics on an ellipsoid      111 — 113
 Geodetic distance      116 117 121 565
 Geometrical optics, M      640 — 642
 Green’s formulas      252 — 258
 Green’s function      261 — 268 290 383
 Haar’s uniqueness proof      145 — 147
 Hadamard’s conjecture      765
 Hadamard’s example of improperly posed problem      229
 Hadamard’s theory of hyperbolic equations      740
 Hamilton — Jacobi equation      118
 Hamilton — Jacobi equation, for geodetic distance      109
 Hamilton — Jacobi equation, theorem      127 129
 Hamiltonian function      106
 Hamiltonian function, for the two body problem      109
 Hankel function      194
 Harmonic function(s)      240
 Harmonic function(s), regular      241 244
 Harnack’s inequality      269
 Harnack’s theorem      273
 Heat equation      20 — 22 154 188 217
 Heat equation, initial value problems for      197 — 201 525
 Heaviside function      622
 Heaviside unit function      see Unit function
 Heaviside, calculus (Heaviside method of operators)      507 — 550
 Heaviside, calculus (Heaviside method of operators), justification of      528 — 535
 Heaviside, calculus (Heaviside method of operators), method      517 — 535
 Heaviside, method of operators      508 517
 Heaviside, operator, definition      528 — 529
 Hilbert, invariant integral      125 — 126
 Hilbert, space      668
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |