Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Methods of Mathematical Physics, Vol. 2

Àâòîðû: Courant R., Hilbert D.

Àííîòàöèÿ:

Since the first volume of this work came out in Germany in 1924, this book, together with its second volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's second and final revision of 1953.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 852

Äîáàâëåíà â êàòàëîã: 04.07.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hodograph method      39(ftn)
Hodograph transformation      428 — 429 431
Holder continuity      248 — 249
Holmgren equation      653(ftn)
Holmgren, theorem      54
Holmgren, uniqueness theorem      237 — 239
Homeomorphism      375(ftn) 393
homogeneous functions      11
Huyghens’ and radiation      764 — 766
Huyghens’ for radiation problem      698
Huyghens’ generalized      735 — 736
Huyghens’ minor principle      671 672
Huyghens’ principle      208 — 210 576 688 735 740 743 760
Huyghens’construction      632
Huyghens’construction, of ray cone      124 — 125
Huyghens’construction, of ray surface      587
Huyghens’construction, of wave fronts      568 — 569
Hydrodynamics      225 599 600
Hyperbolic      156 177 190 216 226 408
Hyperbolic, differential, equations      see also Wave equation
Hyperbolic, differential, equations, in more than two independent variables      551 — 766
Hyperbolic, differential, equations, in two independent variables      407 — 550
Ideal elements in function spaces      767
Ideal functions      621 — 622 766
Ideal functions, as boundary values of harmonic functions      797 — 798
Ideal functions, calculus with      788 — 792
Ideal functions, convolution of      791 — 792
Ideal functions, definite integrals of      785 — 788
Ideal functions, definition, by linear differential operators      775 — 777
Ideal functions, definition, by linear functionals      778 — 779
Ideal functions, definition, by weak limits      777 — 778
Ideal functions, equivalence of various definitions      779 — 781
Ideal functions, identification with ordinary functions      783 — 785
Ideal functions, indefinite integrals of      785
Ideal functions, represented by Fourier coefficients      795 — 796
Ideal functions, strong definition      796 — 797
Impulse(s)      510 513
Index of inertia      556
Initial value problem(s)      39 — 56 135 194 197 221 226 407
Integral, conoid      83
Integral, formulas      677 — 681
Integral, manifold      98
Integral, of system of ordinary differential equations      29
Integral, rational operators      519
Integral, strip      80 410
Integral, strip, alternative, for a strip of second order      413
Integral, surface      2
Integral, surface, for quasi-linear differential equations in n variables      69
Integral, surface, generated by characteristic curves      63 70
Integral, surface, through characteristic strip      82 83
Interior, differential operator      412 555 579
Interior, differentiation (tangential differentiation)      134 170
Invariance of characteristics under point transformations      414 423
Invariance under transformation of independent variables of bicharacteristics      562
Invariance under transformation of independent variables of characteristics      562
Invariance under transformation of independent variables of transverse differentiation      562(ftn)
Isentropic flow, one dimensional      429 — 432
Jet problem      225 — 226
Jump discontinuity      300 427
Jump, relation      149 574
Jump, relation, for second order equations      570
Kellogg’s theorem      336
Laplace, differential equation for the support function of a minimal surface      56 — 58
Laplace, equation      154 176 184 222 374
Laplace, inversion formula      536
Laplace, transformation      535 — 539
Laplace, transformation, application to the operational calculus      539 — 550
Laplacian, in polar coordinates      242
Legendre function      114
Legendre polynomial      271(ftn)
Legendre, transformation      32 — 39 114
Legendre, transformation, application to partial differential equations      35 — 39
Legendre, transformation, for functions of n variables      34 — 35
Legendre, transformation, for functions of two variables      32 — 34
Leibnitz’ rule      577(ftn)
Light, cone      83
Light, rays      88 — 91
Linear, functional(s)      449 453(ftn) 769
Linear, functional, continuity      771 — 773
Linear, operator      770
Linear, transformation      770
Linear,space      403
Linearized equations, compressible fluids      436 — 437
Local barrier function      311
Local ray cone      see Monge cone Ray local
Localization of ideal functions      781
Lorentz transformation      750
Mach, angle      437
Mach, lines      436
Magnetic potential      172
Magnetohydrodynamics      599 612
Magnetohydrodynamics, compressible      614 — 618
Magnetohydrodynamics, incompressible      613 — 614
Major ants      50 — 54
Maximum norm      769
Maximum principle      255 268 326
Maximum principle for subharmonic functions      307 — 308
Maxwell’s equations      178 602 647
Mean value theorem(s)      254 268 275
Mean value theorem(s), for Poisson equation      276 — 277
Mean value theorem(s), for Poisson equation, converse      282 — 284
Mean value theorem(s), for various elliptic equations      286 — 290
Mean value theorem(s), of potential theory      275 276
Mean value theorem(s), of potential theory, converse      277 — 282
Method of descent      205 — 206 686
Method of descent, application to Cauchy’s problem for the general (hyperbolic) linear equation of second order      692 — 694
Method of spherical means      699 — 706
Minimal surface(s)      56 — 58 167 223 400
Mixed, initial and boundary value problems      471 — 475
Mixed, problem(s)      197 223
Monge — Ampere differential equation      324 — 326 348 428 495
Monge, axis      23 29 63
Monge, cone      23 29 75 83 563 581
Monge, cone, for Clairaut’s equation      95
Monge, cone, in hydrodynamics      601
Monge, curves      76
Monge, equation      86 — 88 601
Monge, pencils      63
Negative norms      797
Neumann function      245
Neumann problem      329
Neumann problem, for a nonlinear equation      395
Neumann problem, uniqueness of solutions      329 — 331
Nonanalytic differential equations      54 — 55
Nonexistence of solutions      54
Nonisentropic flow      434 — 437
Nonlinear, boundary value problem      395 — 399
Nonlinear, elliptic equations      367 — 374
Nonsymmetric systems      675 — 676
Norm, maximum      769
Norm, maximum, r-norm      769
Normal cone      563 — 564 569
Normal cone in crystal optics      603 726
Normal differentiation      see Transverse differentiation
Normal form(s), for differential operators of second order      154 — 170
Normal form(s), for linear equations with constant coefficients      181 — 184
Normal form(s), for linear second order equations      155 — 160
Normal form(s), for quasi-linear second order equations      163 — 169
Normal form(s), for systems of two first order equations      169 — 170
Normal form(s), of a hyperbolic system      426
Normal surface      582 — 583
Normal surface, in crystal optics      603 — 609 723
Normal surface, in magnetohydrodynamics      614 — 618
Normal velocity      581
Normal velocity, surface      583
Normal velocity, vector      561
Normed space      403
Null rays      564
One-dimensional isentropic flow, Riemann function for      459 — 461
Operational calculus      see Heaviside operational calculus
Optics      see Geometrical optics Crystal
Oscillatory initial values      636 — 642
Overdetermined, problems      231
Overdetermined, systems      15 — 18
Parabolic      156 177 182 226 423
Parametrix      347 363 367
Parseval formula      794
Perron’s method of subharmonic functions      306 — 312 342
Persistence of properties of initial values      671 — 674
Persistent property of an initial function      673
Perturbation theory      368 — 369
Phase      188 189
Phase, function      761
Piecewise continuous function      245(ftn)
Piecewise smooth surface      245 (ftn)
Plane mean values, method of      711 — 715
Plane waves      187ff 676
Plane waves, decomposition of functions into      677 — 681
Plane-like wave fronts      586
Planetary motion      109
Plateau’s problem, parametric form      225
Plateau’s problem, unsymmetric form      223
Poisson, equation      186 241 246 265 284
Poisson, formula      679 — 681
Poisson, integral      22 261
Poisson, kernel      265 266 268 271
Poisson, kernel, expansions of      271(ftn)
Polytropic gas      431 432 459
Potential      240 — 406
Principal part      140 181
Principal part, of an operator      578
Privaloff s theorem      380 401
Progressing wave(s)      188 — 193 622 636 698 760
Propagation      208
Propagation of discontinuities      416 — 418 618
Properly posed problem      215 227
Pseudo-area      726
Pseudoanalytic function(s)      374 — 400
Pseudoanalytic, differentiation and integration of      386 — 389
Pseudoanalytic, formal powers      384 — 386
Quasi-conformal mapping      392 — 395
Quasi-linear, system(s)      425 476 675
Quasi-linear, system(s), equivalence to single equations in higher-dimensional space      140 — 142
Quasi-linear, system(s), for conservation laws      488 — 490
Quasi-linear, system(s), reduction to      43 — 47
Quasi-linear, system(s), solution of      476
Quasi-linear, system(s), uniqueness for      448 — 449
Quasi-linear,differential equations      31 — 32 408ff
Quasi-linear,differential equations, in n variables      69 — 75
Radiation, condition, Sommerfeld’s      315 — 318
Radiation, construction of      730 — 733
Radiation, for one-dimensional isentropic flow      459 — 461
Radiation, for telegraph equation      458 — 459
Radiation, for wave equation      457 — 458 737
Radiation, from a point      455 — 457
Radiation, function (Riemann radiation function)      764; see Radiation kernel and Huyghens’ principle
Radiation, intensity of      696
Radiation, inward      698
Radiation, kernel (Radiation function, Radiation matrix, Riemann function, Riemann radiation kernel)      696 727-
Radiation, matrix (Riemann matrix, Riemann radiation matrix)      see Fundamental solutions Radiation
Radiation, problem(s)      224 226 695
Radiation, problem(s), for wave equation      206 — 210 703
Radiation, problem(s), solution of      697 — 698
Radiation, problem(s), three dimensional      696
Radiation, process      194
Radiation, regularity properties of      733
Radiation, symmetry of      454 — 455 729 737
Ray(s)      558- 559 (see also Bicharacteristic rays)
Ray(s), associated with an operator      583
Ray(s), cone      124 — 125 563 591 592
Ray(s), cone, Huyghens’ construction of      124 — 125
Ray(s), cone, in crystal optics      726
Ray(s), cone, local      563 584
Ray(s), conoid      83 564 574 584 660
Ray(s), surface      586 — 587
Ray(s), surface, in crystal optics      603 — 609
Ray(s), surface, in magnetohydrodynamics      614 — 618
Ray(s), transverse to a wave front      561
Reciprocal, normal surface      583 (see also Normal velocity surface)
Reciprocal, surfaces      566 — 568
Reciprocal, transformation      566 — 568
Reduced fundamental solution of      314
Reduced standing wave solution      313
Reduced wave equation      187 — 188 312
Reducibility of a characteristic form      596
Reflection principle for harmonic function      272
Refraction, conical      628 — 629
Regular boundary point      311
Rellich’s theorem      324 — 325
Resolution of initial discontinuities      629 — 631
Rest mass      172
Retarded potentials      204
Riemann function for      458 — 459
Riemann, formula      453
Riemann, function      see Radiation kernel
Riemann, invariants      430 431
Riemann, invariants, for polytropic gas      431 432 459
Riemann, kernel      see Radiation kernel
Riemann, mapping, problem      224
Riemann, mapping, theorem, extension of      399
Riemann, matrix      564 — 566; see Radiation kernel metric
Riemann, radiation function, kernel or matrix      see Radiation kernel representation
Riemann, tensor      456 — 457
Riesz representation theorem      453(ftn)
Scattering      226 318
Schauder, estimates      331 — 550
Schauder, fixed point theorem      362 381 403
Schauder, method      336
Schwarz’s alternating procedure      292 293
Semigroups      672 673(ftn)
Semilinear      171
Semilinear, second order equation      557
Semilinear, system      425
Separation of variables      18 — 20
Sharp signal, transmission of      765 766
Shock, conditions, for a system of conservation laws      636
Shock, discontinuities      149
Shocks      490 635
Signal distortion of      698
Signal transmission of      735 760
Similarity      378 382
Similarity, principle      378 — 384
Singular, operators      523
Singular, solution      3 25 105(ftn)
Sommerfeld’s radiation condition      315 — 318
Sound waves      430
Source, for radiation process      194
Space-like, direction      664
Space-like, lens      651
Space-like, manifold      590
Space-like, normal      590
Space-like, surface element(s)      565 590
Space-like, surfaces      569 (see also "Weakly" space-like surface)
Speed of propagation      438
Spherical, means, application to elastic waves      706 — 711
Spherical, means, method of      699 — 706
Spherical, waves      194 — 197 564 585 676 763
Spherical, waves, relatively undistorted      763
Spherically symmetric flow      432
Stability      227
standing waves      761
Steady irrotational flow      432 — 434
Stream lines      436
Stress tensor      706 — 707
Strip condition(s)      77 98
Subharmonic functions      307
Successor of generating pair      388
Superfunction      309
Superharmonic functions      307
Superposition, construction of further solutions by      20 — 22
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå