|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Ising model
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Cardy J. — Scaling and renormalization in statistical physics | | Sornette D. — Critical phenomena in natural sciences | | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1210, 1928, 1944, 1950, 1951 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 340.B 402.G | Mahan G.D. — Many-particle physics | 47, 53 | Zinn-Justin J. — Quantum field theory and critical phenomena | 531 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 62, 439—476 | Zinn-Justin J. — Quantum field theory and critical phenomena | 504 | Lindsey J.K. — Applying generalized linear models | 142—144, 146, 147 | Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 5 | Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation | 14, 15 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1210, 1928, 1944, 1950, 1951 | Conte R. — Painleve Property: One Century Later | 230, 261, 267 | Parisi G. — Statistical field theory | 23, 46—48, 59—64, 130, 207, n. 28, 209, 222, 225, 334 | Peters E.E. — Chaos and Order in the Capital Markets | 193—194 | Grimmett G. — Percolation | 7, 16, 76, 102, 115, 144, 352, 393 | Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 494, 499, 508 | Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 342 | Clarke L.J. — Surface crystallography: an introduction to low energy electron diffraction | 236—237 | Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 21, 80 | Thorisson H. — Coupling, Stationarity, and Regeneration | 470 | Honerkamp J. — Statistical Physics | 122, 123 | Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective | 35 | Heermann D.W. — Computer Simulation Methods in Theoretical Physics | 75, 85, 90, 100, 128 | Winkler G. — Choquet Order and Simplices | 111 | Goodman F.M., Harpe P. — Coxeter Graphs and Towers of Algebras | II.b | Bratteli O. — Derivations, Dissipations and Group Actions on C-Algebras | 8 | Fradkin E. — Field theories of condensed matter systems | 209 | Bollobas B. — Modern Graph Theory | 544 | Raabe D. — Computational materials science | 51, 75 ff, 87, 225 | Billinge S.J.L., Thorpe M.F. — Local structure from diffraction | 217 | Zoladek H. — Monodromy Group | 328 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 238—239 | Chari V., Pressley A. — A Guide to Quantum Groups | 371—372 | Finch S.R. — Mathematical constants | 391 | Weiss U. — Quantum Dissapative Systems | 272 | Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 329, 341, 347 | Simon B. — The Statistical Mechanics of Lattice Gases (vol 1) | 3—4, 130—154 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 14, 102, 106, 108, 109 | Getzlaff M. — Fundamentals of Magnetism | 76 | Kopparapu S.K., Desai U.D. — Bayesian Approach to Image Interpretation | 17 | Chorin A.J. — Vorticity and turbulence | 113—114 | Gogolin A.O., Nersesyan A.A., Tsvelik A.M. — Bosonization and Strongly Correlated Systems | 101—114, 117—119 | Yeomans J.M. — Statistical Mechanics of Phase Transitions | 8, 35 ff. | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 14, 139—140, 161, 166, 674 | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 12—14, 18, 55, 59, 70, 77, 79, 82, 96, 99, 104, 151, 152, 153, 155, 156, 158, 179, 190, 225, 270, 276 | Streater R.F. (Ed) — Mathematics of Contemporary Physics | 153 | Kadanoff L.P. — Statistical physics | 3, 63, 209, 214, 248, 252 | Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 49, 183, 185 | Wagner M. — Unitery Transformations in Solid State Physics | 52, 143, 148, 149 | Gompper G., Schick M. — Self-Assembling Amphiphilic Systems | 25—26, 148—149 (see also “Axial-next-nearest-neighbor Ising model”) | Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 119, 130, 152, 160 | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 163 | Dagotto E., Alvarez G., Cooper S.L. — Nanoscale phase separation and colossal magnetoresistance | 130 | Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 32—35, 47 | Slade G. — The Lace Expansion and Its Applications | IX | Ito K. — Encyclopedic Dictionary of Mathematics | 340.B, 402.G | Shiryaev A.N. — Probability | 23 | Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 248 | Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 37 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 404 | Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics | 12, 5.13, 5.14, 5.16—5.18, 5.20—5.22, 5.24—5.26, 5.28 | Stanley H.E. — Introduction to phase transitions, and critical phenomena | 8ff, 16,113ff, 203, 286 (also see “Ising model, one-dimensional”, “Ising model, two-dimensional”, “Ising model, three-dimensional”) | Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 490 | Rickayzen G. — Green's functions and condensed matter | 316, 318 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 7.17 | Adams C.C. — The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots | 205, 213 | Heer C.V. — Statistical Mechanics: Kinetic, Theory and Stochastic Process | 379 | Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 303, 324, 326 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 1) | 721 | Sinai Ya.G. — Theory of Phase Transitions: Rigorous Results | 5 | Rockmore D. — Stalking the Riemann Hypothesis | 238—239 | Strocchi F. — Symmetry Breaking | 131 | Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 186 | Cowan B. — Topics In Statistical Mechanics | 150, 180 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 301, 392, 426, 427—437 | Kenzel W., Reents G., Clajus M. — Physics by Computer | 190 | Huang K. — Introduction to Statistical Physics | 189 | Grimmett G., Stirzaker D. — Probability and Random Processes | 292 | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 243, 257, 319, 320, 329, 339, 422—427, 439—443 | Animalu A.O. — Intermediate Quantum Theory of Crystalline Solids | 377 | Landau L.D., Lifshitz E.M. — Statistical physics (volume 5 of Course of Theoretical Physics) | 498 n. | Peierls R. — Bird of passage: recollections of a physicist | 116 | Schulman L.S. — Techniques and applications of path integration | 328 | Mehta M.L. — Random Matrices | 6 | ter Haar D. — Elements of Statistical Mechanics | 316, 333 | Baxter R.J. — Exactly Solved Models in Statistical Mechanics | 19—32 (see also specific properties, e.g. free energy) | Zee A. — Quantum field theory in a nutshell | 342 | Pfeiler W. — Alloy Physics: A Comprehensive Reference | 679 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 192, 238 | Shankar R. — Principles of quantum mechanics | 627 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 44, 46, 57, 98, 207, 211, 212, 375, 379, 388, 424, 425, 427, 432, 438-441, 448, 451, 452, 454, 455, 458, 462, 470, 472, 474, 478, 480, 484, 491-493, 497, 501, 502, 507, 509, 510, 516-519, 523, 525-528, 533, 539 | West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 304 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 141 | Berne B. — Statistical Mechanics. Part A: Equilibrium Techniques | 146, 149 | Pathria P.K. — Statistical Mechanics | 316, 319, 321—334, 360, 362 | Conte R. — The Painlevé property: One century later | 230, 261, 267 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 4, 6, 8, 12, 14, 17, 18—26, 31, 94, 169, 343—346, 364 | Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit | 199 | Nash C. — Differential Topology and Quantum Field Theory | 312—313 | Petersen K.E. — Ergodic theory | 280 | Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 26 | Zamolodchikov A.A., Zamolodchikov Al.B. — Conformal field theory and critical phenomena in two-dimensional systems | 269, 273—274, 278, 290, 349 | Ashcroft N.W., Mermin N.D. — Solid State Physics | 712—713 | Kotz S. — Breakthroughs in Statistics (volume 3) | 126 | Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation | 122 | Jerrum M. — Counting, sampling and integrating: algorithms and complexity | 9 | Habib M., McDiarmid C., Ramirez-Alfonsin J. (eds.) — Probabilistic Methods for Algorithmic Discrete Mathematics | 167, 169—171, 177, 185 | Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 9, 32, 54, 111 | Ilachinski A. — Cellular automata. A discrete universe | 332, 358 | Callen H. — Thermodynamics and an Introduction to Thermostatistics | 258, 440 | Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 2, 4, 57, 58, 69, 72, 73, 74, 76, 84, 85, 87, 89, 99, 118, 119, 120, 121, 122, 128, 129, 131, 133, 135, 149, 162, 167, 168, 170, 183, 185, 187, 191, 192, 195, 201, 209, 224, 228, 229, 232, 233, 234, 241, 251, 252, 253, 257, 288, 293, 298, 299, 301, 304, 307, 313, 487, 488, 491, 499, 501, 506, 507, 540, 545, 555, 556, 557, 571, 573, 611, 628, 646, 647, 661, 662, 663 | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 80, 152, 400 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 33, 58, 573, 605 | Roepstorf G. — Path integral approach to quantum physics | 274—278 | Ruelle D. — Statistical Mechanics | 127, 128 | Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 1, 17, 60, 76, 94, 115, 122, 142, 169, 173, 176, 180, 192, 197, 200, 214, 225, 234 | Reif F. — Fundamentals of statistical and thermal physics | 429 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 14, 139—40, 161, 166, 674 | Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics | 436 | Saito Y. — Statistical physics of crystal growth | 16, 21, 26, 37, 100, 124 | Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 554, 598, 609—627 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 192, 238 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2) | 721 | Marder M.P. — Condensed matter physics | 703 | Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions | 123 | Seitz F. — Solid State Physics. Volume 3 | 147 | Henkel M. — Conformal Invariance and Critical Phenomena | 1, 13, 34, 35, 95, 117, 139, 141, 171, 183, 210, 240, 242, 258, 264, 267, 271, 272, 288, 294, 297, 298, 305, 317, 332, 336, 351 | Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 215ff | Borówko M. (ed.) — Computational Methods in Surface and Colloid Science | 89, 150, 265, 266, 272, 283, 428, 655, 660, 855, 858, 910 | Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics | 436 | Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 12, 137, 246 | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 73, 79, 84, 87, 92, 93, 185, 204 | Salmhofer M. — Renormalization: an introduction | 17 | Chandler D. — Introduction to modern statistical mechanics | 120—158 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 266—270 | Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 308 | Smith R. — Smart material systems: model development | 179 | Minlos R.A. — Introduction to Mathematical Statistical Physics | 7, 59, 62 | Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics | 5, 16, 20, 23, 46, 98, 117, 150, 151 | Crisanti A., Paladin G., Vulpiani A. — Products of random matrices in statistical physics | 59 | Kardar M. — Statistical physics of fields | 14, 262 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 36ff, 59, 66, 69, 70, 73ff, 81ff, 119, 235, 320, 341, 349, 351, 412, 416, 470 | Vanmarcke Erik — Random Fields : Analysis and Synthesis | 5 | Rushbrooke G.S. — Introduction to Statistical Mechanics | 296 | Morandi G. — Statistical Mechanics: An Intermediate Course | 160, 166 ff, 402 ff, 419, §26 | ter Haar D. — Elements of Statistical Mechanics | 316, 333 | Davies P. — The New Physics | 211—213, 216—224, 234 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 274, 653 | Unknown A. — Solid State Physics | 155—157 | Plischke M., Bergersen B. — Equilibrium statistical physics | 63, 65, 67, 71, 74, 75, 98, 101, 113, 358, 359, 369 | Honerkamp J. — Statistical physics: an advanced approach with applications | 122, 123 | De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45) | 132 | H. Fehske, R. Schneider, A. Weile — Computational Many-Particle Physics | 81, 586 |
|
|