Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Ising model



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments
Cardy J. — Scaling and renormalization in statistical physics
Sornette D. — Critical phenomena in natural sciences
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)1210, 1928, 1944, 1950, 1951
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2340.B 402.G
Mahan G.D. — Many-particle physics47, 53
Zinn-Justin J. — Quantum field theory and critical phenomena531
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory62, 439—476
Zinn-Justin J. — Quantum field theory and critical phenomena504
Lindsey J.K. — Applying generalized linear models142—144, 146, 147
Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC5
Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation14, 15
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)1210, 1928, 1944, 1950, 1951
Conte R. — Painleve Property: One Century Later230, 261, 267
Parisi G. — Statistical field theory23, 46—48, 59—64, 130, 207, n. 28, 209, 222, 225, 334
Peters E.E. — Chaos and Order in the Capital Markets193—194
Grimmett G. — Percolation7, 16, 76, 102, 115, 144, 352, 393
Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology494, 499, 508
Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations342
Clarke L.J. — Surface crystallography: an introduction to low energy electron diffraction236—237
Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes21, 80
Thorisson H. — Coupling, Stationarity, and Regeneration470
Honerkamp J. — Statistical Physics122, 123
Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective35
Heermann D.W. — Computer Simulation Methods in Theoretical Physics75, 85, 90, 100, 128
Winkler G. — Choquet Order and Simplices111
Goodman F.M., Harpe P. — Coxeter Graphs and Towers of AlgebrasII.b
Bratteli O. — Derivations, Dissipations and Group Actions on C-Algebras8
Fradkin E. — Field theories of condensed matter systems209
Bollobas B. — Modern Graph Theory544
Raabe D. — Computational materials science51, 75 ff, 87, 225
Billinge S.J.L., Thorpe M.F. — Local structure from diffraction217
Zoladek H. — Monodromy Group328
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers238—239
Chari V., Pressley A. — A Guide to Quantum Groups371—372
Finch S.R. — Mathematical constants391
Weiss U. — Quantum Dissapative Systems272
Balescu R. — Equilibrium and nonequilibrium statistical mechanics329, 341, 347
Simon B. — The Statistical Mechanics of Lattice Gases (vol 1)3—4, 130—154
Thouless D.J. — Topological quantum numbers in nonrelativistic physics14, 102, 106, 108, 109
Getzlaff M. — Fundamentals of Magnetism76
Kopparapu S.K., Desai U.D. — Bayesian Approach to Image Interpretation17
Chorin A.J. — Vorticity and turbulence113—114
Gogolin A.O., Nersesyan A.A., Tsvelik A.M. — Bosonization and Strongly Correlated Systems101—114, 117—119
Yeomans J.M. — Statistical Mechanics of Phase Transitions8, 35 ff.
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics14, 139—140, 161, 166, 674
Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1)12—14, 18, 55, 59, 70, 77, 79, 82, 96, 99, 104, 151, 152, 153, 155, 156, 158, 179, 190, 225, 270, 276
Streater R.F. (Ed) — Mathematics of Contemporary Physics153
Kadanoff L.P. — Statistical physics3, 63, 209, 214, 248, 252
Mihaly L., Martin M.C. — Solid state physics. Problems and solutions49, 183, 185
Wagner M. — Unitery Transformations in Solid State Physics52, 143, 148, 149
Gompper G., Schick M. — Self-Assembling Amphiphilic Systems25—26, 148—149 (see also “Axial-next-nearest-neighbor Ising model”)
Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1119, 130, 152, 160
Dorlas T.C. — Statistical mechanics, fundamentals and model solutions163
Dagotto E., Alvarez G., Cooper S.L. — Nanoscale phase separation and colossal magnetoresistance130
Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19)32—35, 47
Slade G. — The Lace Expansion and Its ApplicationsIX
Ito K. — Encyclopedic Dictionary of Mathematics340.B, 402.G
Shiryaev A.N. — Probability23
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform248
Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models37
Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1)404
Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics12, 5.13, 5.14, 5.16—5.18, 5.20—5.22, 5.24—5.26, 5.28
Stanley H.E. — Introduction to phase transitions, and critical phenomena8ff, 16,113ff, 203, 286 (also see “Ising model, one-dimensional”, “Ising model, two-dimensional”, “Ising model, three-dimensional”)
Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation490
Rickayzen G. — Green's functions and condensed matter316, 318
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2)7.17
Adams C.C. — The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots205, 213
Heer C.V. — Statistical Mechanics: Kinetic, Theory and Stochastic Process379
Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions303, 324, 326
Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 1)721
Sinai Ya.G. — Theory of Phase Transitions: Rigorous Results5
Rockmore D. — Stalking the Riemann Hypothesis238—239
Strocchi F. — Symmetry Breaking131
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics186
Cowan B. — Topics In Statistical Mechanics150, 180
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1)301, 392, 426, 427—437
Kenzel W., Reents G., Clajus M. — Physics by Computer190
Huang K. — Introduction to Statistical Physics189
Grimmett G., Stirzaker D. — Probability and Random Processes292
Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2)243, 257, 319, 320, 329, 339, 422—427, 439—443
Animalu A.O. — Intermediate Quantum Theory of Crystalline Solids377
Landau L.D., Lifshitz E.M. — Statistical physics (volume 5 of Course of Theoretical Physics)498 n.
Peierls R. — Bird of passage: recollections of a physicist116
Schulman L.S. — Techniques and applications of path integration328
Mehta M.L. — Random Matrices6
ter Haar D. — Elements of Statistical Mechanics316, 333
Baxter R.J. — Exactly Solved Models in Statistical Mechanics19—32 (see also specific properties, e.g. free energy)
Zee A. — Quantum field theory in a nutshell342
Pfeiler W. — Alloy Physics: A Comprehensive Reference679
Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach192, 238
Shankar R. — Principles of quantum mechanics627
Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods44, 46, 57, 98, 207, 211, 212, 375, 379, 388, 424, 425, 427, 432, 438-441, 448, 451, 452, 454, 455, 458, 462, 470, 472, 474, 478, 480, 484, 491-493, 497, 501, 502, 507, 509, 510, 516-519, 523, 525-528, 533, 539
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators304
Prigogine I. — From being to becoming: time and complexity in the physical sciences.141
Berne B. — Statistical Mechanics. Part A: Equilibrium Techniques146, 149
Pathria P.K. — Statistical Mechanics316, 319, 321—334, 360, 362
Conte R. — The Painlevé property: One century later230, 261, 267
Amit D.J. — Field theory, the renormalization group, and critical phenomena4, 6, 8, 12, 14, 17, 18—26, 31, 94, 169, 343—346, 364
Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit199
Nash C. — Differential Topology and Quantum Field Theory312—313
Petersen K.E. — Ergodic theory280
Marcus M., Minc H. — Survey of matrix theory and matrix inequalities26
Zamolodchikov A.A., Zamolodchikov Al.B. — Conformal field theory and critical phenomena in two-dimensional systems269, 273—274, 278, 290, 349
Ashcroft N.W., Mermin N.D. — Solid State Physics712—713
Kotz S. — Breakthroughs in Statistics (volume 3)126
Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation122
Jerrum M. — Counting, sampling and integrating: algorithms and complexity9
Habib M., McDiarmid C., Ramirez-Alfonsin J. (eds.) — Probabilistic Methods for Algorithmic Discrete Mathematics167, 169—171, 177, 185
Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group9, 32, 54, 111
Ilachinski A. — Cellular automata. A discrete universe332, 358
Callen H. — Thermodynamics and an Introduction to Thermostatistics258, 440
Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 32, 4, 57, 58, 69, 72, 73, 74, 76, 84, 85, 87, 89, 99, 118, 119, 120, 121, 122, 128, 129, 131, 133, 135, 149, 162, 167, 168, 170, 183, 185, 187, 191, 192, 195, 201, 209, 224, 228, 229, 232, 233, 234, 241, 251, 252, 253, 257, 288, 293, 298, 299, 301, 304, 307, 313, 487, 488, 491, 499, 501, 506, 507, 540, 545, 555, 556, 557, 571, 573, 611, 628, 646, 647, 661, 662, 663
Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics80, 152, 400
Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 133, 58, 573, 605
Roepstorf G. — Path integral approach to quantum physics274—278
Ruelle D. — Statistical Mechanics127, 128
Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena1, 17, 60, 76, 94, 115, 122, 142, 169, 173, 176, 180, 192, 197, 200, 214, 225, 234
Reif F. — Fundamentals of statistical and thermal physics429
Chaikin P., Lubensky T. — Principles of condensed matter physics14, 139—40, 161, 166, 674
Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics436
Saito Y. — Statistical physics of crystal growth16, 21, 26, 37, 100, 124
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods554, 598, 609—627
Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach192, 238
Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2)721
Marder M.P. — Condensed matter physics703
Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions123
Seitz F. — Solid State Physics. Volume 3147
Henkel M. — Conformal Invariance and Critical Phenomena1, 13, 34, 35, 95, 117, 139, 141, 171, 183, 210, 240, 242, 258, 264, 267, 271, 272, 288, 294, 297, 298, 305, 317, 332, 336, 351
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version215ff
Borówko M. (ed.) — Computational Methods in Surface and Colloid Science89, 150, 265, 266, 272, 283, 428, 655, 660, 855, 858, 910
Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics436
Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics12, 137, 246
Hartmann A.K., Rieger H. — Optimization Algorithms in Physics73, 79, 84, 87, 92, 93, 185, 204
Salmhofer M. — Renormalization: an introduction17
Chandler D. — Introduction to modern statistical mechanics120—158
Polchinski J. — String theory (volume 2). Superstring theory and beyond266—270
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach308
Smith R. — Smart material systems: model development179
Minlos R.A. — Introduction to Mathematical Statistical Physics7, 59, 62
Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics5, 16, 20, 23, 46, 98, 117, 150, 151
Crisanti A., Paladin G., Vulpiani A. — Products of random matrices in statistical physics59
Kardar M. — Statistical physics of fields14, 262
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View36ff, 59, 66, 69, 70, 73ff, 81ff, 119, 235, 320, 341, 349, 351, 412, 416, 470
Vanmarcke Erik — Random Fields : Analysis and Synthesis5
Rushbrooke G.S. — Introduction to Statistical Mechanics296
Morandi G. — Statistical Mechanics: An Intermediate Course160, 166 ff, 402 ff, 419, §26
ter Haar D. — Elements of Statistical Mechanics316, 333
Davies P. — The New Physics211—213, 216—224, 234
Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics274, 653
Unknown A. — Solid State Physics155—157
Plischke M., Bergersen B. — Equilibrium statistical physics63, 65, 67, 71, 74, 75, 98, 101, 113, 358, 359, 369
Honerkamp J. — Statistical physics: an advanced approach with applications122, 123
De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45)132
H. Fehske, R. Schneider, A. Weile — Computational Many-Particle Physics81, 586
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå