Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics
Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Problems on statistical mechanics

Авторы: Dalvit D.A.R., Frastai J., Lawrie I.D.

Аннотация:

Discusses statistical mechanics and the manipulative skills that are acquired through the solving of problems. Provides over 120 problems with model solutions, illustrating both basic principles and applications ranging from solid state physics to cosmology. DLC: Statistical mechanics.


Язык: en

Рубрика: Физика/Термодинамика, статистическая физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 284

Добавлена в каталог: 15.08.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Antiferromagnet      5.16 5.22
Antiparticles      4.26
Atmosphere, idealized model of Earth’s      6.19
Black — Scholes equation      6.4
Black-body radiation      9 2.11 4.4 4.5
Boltzmann counting      6 3.1 4.2
Boltzmann equation      14 6.17
Boltzmann equation for fermions      6.21
Boltzmann equation, relaxation time approximation      15 6.17 6.18 6.22—6.24
Bose — Einstein condensation      4.12 4.14 4.15
Bose — Einstein gas      4.12—4.15
Bose — Einstein statistics      9 4.1—4.3
Boyle temperature      5.3
Brillouin function      5.26
Brownian motion      16 6.12
Brownian motion, geometric, of stock prices      6.3
canonical ensemble      6 3.9—3.22 3.28—3.30
chemical potential      2 4 7 3.23 3.24 4.22
Chemical potential and Fermi energy      4.17 4.18 4.26
Classical gas      3.1 3.2
Classical gas with absorbing walls      3.25 3.26
Classical gas, relativistic      3.3
Classical gas, specific heats      2.9 3.3 3.20
Classical gas, transport processes      6.17—6.20
Clausius — Clapeyron equation      4.12
Compressibility, adiabatic      5 2.4
Compressibility, isothermal      5 2.4.
Compressibility, isothermal, divergence at critical point      4.13 5.8.
Compressibility, isothermal, of Fermi — Dirac gas      4.17
Conduction, thermal      6.14 6.15 6.20
Conductivity, electrical, charged gas      6.13
Conductivity, electrical, Drude’s theory      6.13
Conductivity, electrical, metals      6.13 6.22 6.24
Conductivity, electrical, metals, frequency-dependent      6.23
Correlation function      5.14 5.16 5.20 5.21
correlation length      5.16 5.28
Critical exponents      13
Critical exponents and amplitude ratios, universality of      5.23
Critical exponents for Heisenberg model in mean-field approximation      5.23
Critical exponents for Ising model in mean-field approximation      5.24
Critical exponents for van-der-Waals gas      5.8
Critical exponents from renormalization group      5.28
Critical isochore      5.9
Critical isotherm      5.8 5.9
Critical point      13 5.8 5.9 5.23—5.26 5.28
Critical point, scaling      5.8 5.9 5.28
Critical temperature      13
Cumulant average      3.13
Curie temperature      13
Curie — Weiss law      5.22
Curie’s law      3.14 4.23
Debye temperature      4.10
Debye’s approximation      4.8—4.11
Density matrix      6.21
Density of states      10 4.2 4.6 4.12
Detailed balance      4.5
Diatomic gas      3.18 3.19 3.21
Diffusion of heat      15 6.14 6.15
Diffusion of particles      15 6 6.2 6.4 6.7 6.12 6.13 6.17
Dirac sea      4.26
Distinguishable and indistinguishable particles      6 9 3.4 4.1 4.2
Distribution function      14 6.10 6.11 6.17—6.19
Distribution function, Wigner      6.21—6.24
Domain wall      6.16
Early Universe      2.11
Ensemble, Canonical      6 3.8—3.22
Ensemble, Grand Canonical      6 3.23—3.26
Ensemble, isobaric      7 3.27
Ensemble, microcanonical      5 3.1—3.8
Ensemble, relationships between microcanonical, canonical and grand canonical      3.2 3.8 3.28—3.30
Entropy and information      2 2.3 3.6 3.8
Entropy, extensivity of      4 3.4
Equipartition of energy      3.4 3.10 3.18 3.20 3.27 4.11 6.12
Euler — Maclaurin formula      3.18
Euler’s equation      4
Extensive variables      4
Fermi energy      11 4.17 4.18
Fermi sea      4.26
Fermi temperature      4.17
Fermi — Dirac gas      4.17—4.29
Ferromagnet      12 5.17 5.22—5.26
First law of thermodynamics      2 3 2.8 2.10
Fluctuation-dissipation relation      6.12 6.13
Fluctuations      7
Fluctuations in energy and particle number      3.28 4.2 4.3
Fokker — Planck equation      6
Free energy, Gibbs      3 7 2.1 2.10 4.13 5.8 5.9
Free energy, Helmholtz      3 6 2.1 3.6 3.8 3.13 3.29 4.13 5.1 5.2
Free energy, Landau      5.8
Frustration      5.16
Fugacity      7 3.25 4.2 4.12 4.15 4.25
Gibbs free energy      3 7 2.1 2.10
Gibbs free energy of Bose gas      4.13
Gibbs free energy of van-der-Waals gas      5.8
Gibbs free energy, scaling near a critical point      5.9
Gibbs — Duhem equation      4 2.5
Ginzburg — Landau equation, time-dependent      6.16
grand canonical ensemble      6 3.23—3.26
Grand canonical ensemble, fluctuations of particle number and energy      3.28
Grand canonical ensemble, relationship with other ensembles      3.28—3.30
Grand potential      3 7 3.25 3.28
Hall coefficient      6.22
Harmonic forces, chain of particles bound by      4.7 4.11
Harmonic oscillators      3.4 3.5 3.9 4.7
Heisenberg model      5.19 5.23
Helmholtz free energy      3 6 2.1 3.6 3.8 3.13 3.29 4.13
Helmholtz free energy of non-ideal gas      5.1 5.2
Holes      4.26
Hubbard — Stratonovich transformation      5.17
Ideal classical gas      2.7 3.1 3.25 3.26
Ideal quantum gas      3.2
Ideal quantum gas, Bose — Einstein      4.12—4.15
Ideal quantum gas, Fermi — Dirac      4.17—1.29
Indistinguishable and distinguishable particles      6 9 3.4 4.1 4.2
Information and entropy      2 2.3 3.6 3.8
Intensive variables      4
Internal energy      2 3.13
Internal energyand pressure of an ideal gas      10 4.21
Internal energyand pressure of imperfect gas      5.1 5.2 5.4
Internal energyof 2-dimensional gas      3.12
Internal energyof a long elastic molecule      3.27
Internal energyof diatomic gas      3.19 3.22
Inversion temperature, Joule — Kelvin      5.3
Ising model      12 5.13 5.14 5.16—5.18 5.20—5.22 5.24—5.26 5.28
Ising model and lattice gas      5.12
Isobaric ensemble      7 3.27
Joule effect      2.8
Joule — Kelvin process      5.3
Landau free energy      5.8
Landau levels      4.23
Langevin equation      16 6.12 6.13
Langevin function      3.14 3.15
Lattice gas      3.16 3.24
Lattice gas and Ising model      5.12
Magnetic material, thermodynamic properties of      2.10
magnetic susceptibility      13
Magnetic susceptibility of antiferromagnet      5.22
Magnetic susceptibility, critical behaviour      13 5.23 5.24
Magnetic susceptibility, relation to correlation function      5.20
magnetization      13 2.10
Magnetization, critical behaviour      5.23 5.24
Magnetization, paramagnet      3.14
Magnetization, spontaneous      13
Magnetization, staggered (or sublattice)      5.22
Markov process (or chain)      15 6.5 6.6
Master equation      16 6
Maxwell equal-areas construction      5.8
Maxwell relations      3 2.4 2.5 2.8—2.10
Maxwell — Boltzmann statistics      9 4.1—4.3 4.21
Mean-field approximation      13 5.22—5.26
microcanonical ensemble      5 3.1—3.8
Morse potential      3.22
Negative temperature      2.2 3.6—3.8
Neutrinos      2.11
Nuclear shell model      5.10
Ordering field      5.22
Pair potential      5.1 5.3—5.5 5.7
Partition function canonical      6 3.9—3.22
Partition function grand canonical      7 3.23—3.26
Phase transition      13 (see also “Critical point”)
Phase transition in Bose — Einstein gas      4.12—4.14
Phase transition, Landau theory      5.8 6.16
Phonons      9 4.7—4.11
Phonons, optical and acoustic branches of spectrum      4.11
Potentials, thermodynamic      3 2.7 2.10
Potentials, thermodynamic, associated with statistical ensembles      6—8
Potts model      5.11
Random walk      6.1—6.4
Random walk, stock prices      6.3 6.4
Relativistic gases      2.11 3.3 3.23 4.4. 4.26 4.27
Relaxation-time approximation      15 6.17 6.18 6
Renormalization group      5.28
Rotons      4.16
Saddle-point approximation      5.17
Scaling      5.8 5.9 5.28
Second law of thermodynamics      2 2.1 2.2
Soliton      6.16
Specific heat (or heat capacity)      4 3.10 3.11
Specific heat (or heat capacity) of black body radiation      4.4
Specific heat (or heat capacity) of diatomic and polyatomic gases      3.18 3.20 3.21
Specific heat (or heat capacity) of superfluid      4.16
Specific heat (or heat capacity) of van-der-Waals gas      2.9
Specific heat (or heat capacity), Bose — Einstein gas      4.12
Specific heat (or heat capacity), critical behaviour      4.12 5.9 5.24
Specific heat (or heat capacity), phonon contribution      4.7—4.11
Specific heat (or heat capacity), principal      4 2.4 2.8
Specific heat (or heat capacity), principal, ratio      3.3
Staggered magnetic field      5.22
Statistics, Bose — Einstein      9 4.1—4.3
Statistics, Fermi — Dirac      9 4.1—4.3
Statistics, Maxwell — Boltzmann      9 4.1—4.3 4.21
Stefan — Boltzmann constant      4.4
Superfluid      4.16
Susceptibility, diamagnetic      4.23
Susceptibility, magnetic      13
Susceptibility, magnetic of antiferromagnet      5.22
Susceptibility, magnetic, critical behaviour      13 5 5.24
Susceptibility, magnetic, relation to correlation function      5.20
Susceptibility, paramagnetic      4
Temperature in microcanonical ensemble      3.1 3.6
Temperature, absolute thermodynamic scale      2
Temperature, negative      2.2 3.6—3.8
Thermal conductivity of a gas      6.17—6.20
Thermal conductivity of a metal      6.22 6.24
Thermal de Broglie wavelength      12 3.18
Thermal expansivity      2.4
Thermodynamic limit      3.2 3.5 3.6 3.30 4.12 5.2 5.11
Thermodynamic potentials      3 2.7 2.10
Thermodynamic potentials, associated with statistical ensembles      6—8
Thermodynamics, first law of      2 3 2.8 2.10
Thermodynamics, fundamental equation of      4
Thermodynamics, second law of      2 2.1 2.2
Thermodynamics, third law of      2 3.11 3.18
Thermoelectric power      6.22. 6
Time-dependent Ginzburg — Landau equation      6.16
Transfer matrix      5.11 5.13 5.14 5.16
van Leeuwen’s theorem      4.23
van-der-Waals gas      2.9
van-der-Waals gas, critical properties      5.8
Virial expansion      5.2—5.7
Virial expansion for a mixture of two gases and      5.7
Virial expansion for hard-sphere gas      5.6
viscosity      6.17
Wigner distribution function      6.21—6.24
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте