|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Goodman F.M., Harpe P. — Coxeter Graphs and Towers of Algebras |
|
 |
Предметный указатель |
1.1
1.1 I.1
4.5.2
-algebra II.a
3.2
1.1 1.5
- relations 2.1.6 2.7.5
2.3
, 1.1
2.8
2.1 2.3 3.1 3.5
1.1
= a given field 2.1
2.8
2.1.8 2.7 2.8
2.1.7 2.8 II.b
and Hecke algebras 2.1.9 2.11
2.8 2.9
1.1
Adjacency matrix of a graph 1.3
Bicoloration number of a graph 1.4
Bicommutant theorem 2.2.3
Borel subgroup 2.10.a
Braiding relations 2.1
Bratteli diagram 2.3
Bruhat decomposition 2.10.a
Catalan numbers 2.7
Central algebra 2.1
Chains of multi-matrix algebras 2.3
Characteristic polynomial of a graph 1.3
Commutant and bicommutant 2.1
Commuting square 4.1 4.2
Conditional expectation 2.1 2.6
Conditional expectation and the fundamental construction 2.6.4
Connected pair of algebras 2.1
Coupling constant 2.2 3.2
Covolume of a lattice 3.3.e
Coxeter exponents 1.4
Coxeter graph 1.1 1.4
Coxeter invariant 4.6
Cusp form 3.3.e
Depth 4.1 4.6
Derived tower 4.1 4.6
Dimension of a projection 3.2
Discrete series 3.3.a
E-extension 2.6.6
Factor 2.1 2.2 3.2
Factor of type 3.2
Faithful conditional expectation 2.6
Faithful trace 2.1 2.5
Finite depth 4.1 4 6
Finite factor 3.2
Finite index 3.1 3.5
Finite representation of a pair 3.5
Floor of a Bratteli diagram 2.3
Formal dimension 3.3.a
Full factor 3.4
Fundamental construction for finite von Neumann algebras 3.1 3.6
Fundamental construction for multi-matrix algebras 2.1 2.4
Generic 2.1 2.7
Graph, labelled 1.1
Graph, marked 1.1
Graph, norm 1.3
Graph, principal 4.1 4.6
Graph, spectral radius 1.3
Graph, spectral spread 1.4
Hecke algebra 2.10.a
Hecke algebra 2.1 2.10.b 2.11
| Hecke groups 3.1 III
Inclusion matrix, index matrix 2.1 2.3 3.1 3.5
INDEX 2.1 3.1 3.4 3.7
Index of pairs of finite von Neumann algebras 3.7.5
Index of semi-simple pairs 2.1.1
Index of subfactors 3.4
Infinite conjugacy class (icc) group 3.3.b
Involution II.a
Irreducible subfactor 3.4
Ising model II.b
Kronecker’s theorem 1.1.1 1.2.1 1.2.2
Lattice (in a Lie group) 3.3.b
Markov relation 3.1
Markov trace 2.1 2.7 3.1 3.7
Markov trace and index for multi-matrix algebras 2.1.4 2.7.3
Matrix of a bicolored graph 1.3
Matrix, adjacency 1.3
Matrix, aperiodic (=primitive) non-negative 1.3
Matrix, equivalent 1.3
Matrix, indecomposable 1.1 1.2
Matrix, index matrix = inclusion matrix 2.1 2.3 3 1 3 5
Matrix, irredundant 1.3
Matrix, norm of a matrix 1.1
Matrix, parabolic III
Matrix, pseudo-equivalent 1.1 1.3
Matrix, reducible 1.3
Matrix, trace matrix 3.1 3.5
Matrix, transfer matrix II.b
Modulus of a Markov trace 2.1 2.7 3.1 3.7
Monomial in 2.8
Multi-matrix algebra 2.1
Natural trace 3.2
Normalized trace 3.2
Parabolic matrix III
Partition function II.b
Path model 2 3.11
Path model and the fundamental construction 2.4.6 2.6.5
Path model and the tower construction 2.7.6
Perron — Frobenius theory 1.4
Peterson inner product 3.3.e
Pimsner — Popa basis 3.6.4
Popa’ s theorem 4.7.3
Positive conditional expectation II.a
Positive involution II.a
Positive trace 2.1 2.5 II.a
Principal graph 4.1 4.6
Rank of a module 2.1
Reduction by a projection 2.2 3.2
Regular subfactor 3.4
Row vector 2.1 2.5
Self-adjoint conditional expectation II.a
Skau’s lemma 4.4.3
Skolem — Noether theorem 2.2.6
Square lattice Pott’s model II.b
Story of a Bratteli diagram 2.3
Temperley — Lieb algebras 2.1 2.7 2.8 2.11 II.b
Tower 2.1 2.4
Trace 2.1 2.5 3.2 3.5 II.a
Trace matrix 3.1 3.5
Transfer matrix II.b
Tunnel construction 4.7.e
Ultraweak topology 3.2
Very faithful conditional expectation 2.6
von Neumann algebra 3.2
Weights of a trace 2.5
Wenzl’s representations 2.10.d
Wenzl’s representations, index formula 4.3
Young diagrams 2.10.c
|
|
 |
Реклама |
 |
|
|