Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Goodman F.M., Harpe P. — Coxeter Graphs and Towers of Algebras
Goodman F.M., Harpe P. — Coxeter Graphs and Towers of Algebras

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Coxeter Graphs and Towers of Algebras

Авторы: Goodman F.M., Harpe P.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1989

Количество страниц: 288

Добавлена в каталог: 12.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$(2 + 5^{1/2})^{1/2}$      1.1
$(\lambda_q)_{q\geq 2}$      1.1 I.1
$3 + 3^{1/2}$      4.5.2
$C^*$-algebra      II.a
$dim_M(H)$      3.2
$E = \mathcal{N}(\mathbb{N})$      1.1 1.5
$e_i$- relations      2.1.6 2.7.5
$K_0$      2.3
$Mat_{m,n}(S)$, $Mat_{fin}(S)$      1.1
$P_k \in \mathbb{Z}[\lambda]$      2.8
$\Lambda_N^M$      2.1 2.3 3.1 3.5
$\mathbb{K} = {0, 2} \cup {2cos(\pi/k)}_{k\geq 3}$      1.1
$\mathbb{K}$ = a given field      2.1
$\mathcal{A}_{gen,k}$      2.8
$\mathcal{A}_{tr,l}(M_0\in M_1)$      2.1.8 2.7 2.8
$\mathcal{A}_{\beta,k}$      2.1.7 2.8 II.b
$\mathcal{A}_{\beta,k}$ and Hecke algebras      2.1.9 2.11
$\mathcal{B}_{\beta,l}$      2.8 2.9
$\mathcal{N}(S)$      1.1
Adjacency matrix of a graph      1.3
Bicoloration number of a graph      1.4
Bicommutant theorem      2.2.3
Borel subgroup      2.10.a
Braiding relations      2.1
Bratteli diagram      2.3
Bruhat decomposition      2.10.a
Catalan numbers      2.7
Central algebra      2.1
Chains of multi-matrix algebras      2.3
Characteristic polynomial of a graph      1.3
Commutant and bicommutant      2.1
Commuting square      4.1 4.2
Conditional expectation      2.1 2.6
Conditional expectation and the fundamental construction      2.6.4
Connected pair of algebras      2.1
Coupling constant      2.2 3.2
Covolume of a lattice      3.3.e
Coxeter exponents      1.4
Coxeter graph      1.1 1.4
Coxeter invariant      4.6
Cusp form      3.3.e
Depth      4.1 4.6
Derived tower      4.1 4.6
Dimension of a projection      3.2
Discrete series      3.3.a
E-extension      2.6.6
Factor      2.1 2.2 3.2
Factor of type $II_1$      3.2
Faithful conditional expectation      2.6
Faithful trace      2.1 2.5
Finite depth      4.1 4 6
Finite factor      3.2
Finite index      3.1 3.5
Finite representation of a pair      3.5
Floor of a Bratteli diagram      2.3
Formal dimension      3.3.a
Full factor      3.4
Fundamental construction for finite von Neumann algebras      3.1 3.6
Fundamental construction for multi-matrix algebras      2.1 2.4
Generic $\beta$      2.1 2.7
Graph, labelled      1.1
Graph, marked      1.1
Graph, norm      1.3
Graph, principal      4.1 4.6
Graph, spectral radius      1.3
Graph, spectral spread      1.4
Hecke algebra $H(G, G_0)$      2.10.a
Hecke algebra $H_{q,k}$      2.1 2.10.b 2.11
Hecke groups      3.1 III
Inclusion matrix, index matrix      2.1 2.3 3.1 3.5
INDEX      2.1 3.1 3.4 3.7
Index of pairs of finite von Neumann algebras      3.7.5
Index of semi-simple pairs      2.1.1
Index of subfactors      3.4
Infinite conjugacy class (icc) group      3.3.b
Involution      II.a
Irreducible subfactor      3.4
Ising model      II.b
Kronecker’s theorem      1.1.1 1.2.1 1.2.2
Lattice (in a Lie group)      3.3.b
Markov relation      3.1
Markov trace      2.1 2.7 3.1 3.7
Markov trace and index for multi-matrix algebras      2.1.4 2.7.3
Matrix of a bicolored graph      1.3
Matrix, adjacency      1.3
Matrix, aperiodic (=primitive) non-negative      1.3
Matrix, equivalent      1.3
Matrix, indecomposable      1.1 1.2
Matrix, index matrix = inclusion matrix      2.1 2.3 3 1 3 5
Matrix, irredundant      1.3
Matrix, norm of a matrix      1.1
Matrix, parabolic      III
Matrix, pseudo-equivalent      1.1 1.3
Matrix, reducible      1.3
Matrix, trace matrix      3.1 3.5
Matrix, transfer matrix      II.b
Modulus of a Markov trace      2.1 2.7 3.1 3.7
Monomial in $\mathcal{A}_{\beta,k}$      2.8
Multi-matrix algebra      2.1
Natural trace      3.2
Normalized trace      3.2
Parabolic matrix      III
Partition function      II.b
Path model      2 3.11
Path model and the fundamental construction      2.4.6 2.6.5
Path model and the tower construction      2.7.6
Perron — Frobenius theory      1.4
Peterson inner product      3.3.e
Pimsner — Popa basis      3.6.4
Popa’ s theorem      4.7.3
Positive conditional expectation      II.a
Positive involution      II.a
Positive trace      2.1 2.5 II.a
Principal graph      4.1 4.6
Rank of a module      2.1
Reduction by a projection      2.2 3.2
Regular subfactor      3.4
Row vector      2.1 2.5
Self-adjoint conditional expectation      II.a
Skau’s lemma      4.4.3
Skolem — Noether theorem      2.2.6
Square lattice Pott’s model      II.b
Story of a Bratteli diagram      2.3
Temperley — Lieb algebras $(\mathcal{A}_{\beta,k})$      2.1 2.7 2.8 2.11 II.b
Tower      2.1 2.4
Trace      2.1 2.5 3.2 3.5 II.a
Trace matrix      3.1 3.5
Transfer matrix      II.b
Tunnel construction      4.7.e
Ultraweak topology      3.2
Very faithful conditional expectation      2.6
von Neumann algebra      3.2
Weights of a trace      2.5
Wenzl’s representations      2.10.d
Wenzl’s representations, index formula      4.3
Young diagrams      2.10.c
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте