Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 57 |
Apostol T.M. — Calculus (vol 1) | 614 (Exercise 6) |
Apostol T.M. — Calculus (vol 2) | 69 (Exercise 6) |
Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 39, 47 (see also “Invariance proper and improper”) |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 359.B |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 94—100 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 94—100 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 37 |
Hamilton W.R. — The collected mathematical papers. Volume 3: algebra | 643 |
Meirovitch L. — Methods of analytical dynamics | 5—6, 8 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 107 |
Cox D., Katz S. — Mirror symmetry and algebraic geometry | 415 |
Felsager B. — Geometry, particles and fields | 287 |
Hoffman K., Kunze R. — Linear algebra | 311 (Ex. 15), 382 |
Jennings G.A. — Modern Geometry with Applications | 159—165, 169 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 259, 261, 262, 472 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 280—265 |
Jensen F. — Introduction to Computational Chemistry | 204 |
Artin M. — Algebra | 271 |
Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 317 |
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 5, 31 |
Hand L.N., Finch J.D. — Analytical Mechanics | 498—501, 503—504, 555—556, 544 (prob) |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 500 |
Von Laue M. — History of Physics | 59, 72—73 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 718, 1278 |
Reid M., Szendroi B. — Geometry and Topology | 47, 54, 92, 144 |
Browne M.E. — Schaum's outline of theory and problems of physics for engineering and science | 391 |
Bapat R.B., Raghavan T.E., Rota G.C. (Ed) — Nonnegative Matrices and Applications | 52 |
Fock V. — The Theory of Space Time and Gravitation | 16—18, 368 |
Rutherford D.E. — Vector Methods | 129 |
Strauss W.A. — Partial Differential Equations: An Introduction | 221 |
Araki H. — Mathematical Theory of Quantum Fields | 60 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 46, 51 |
Eringen A.C. — Mechanics of continua | 433 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 56 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 120 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 386, 756 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 386 |
Greiner W. — Classical mechanics. Point particles and relativity | 370, 378 |
Naber G.L. — Topology, Geometry and Gauge Fields | 191 |
Shiffer M.M., Bowden L. — Role of Mathematics in Science | 190,193, 195, 197,198 |
Eschrig H. — The Fundamentals of Density Functional Theory | 164 |
Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 27 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 15—3,17—1, 34—8, 52—2 |
Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 186 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 56 |
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 6, 12 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
Coxeter H.S.M. — Introduction to Geometry | 206 |
Ito K. — Encyclopedic Dictionary of Mathematics | 359.B |
Menzel D.H. — Mathematical Physics | 383 |
Brown L.S. — Quantum Field Theory | 175 |
Thaller B. — The Dirac equation | 44, 304 |
Poisson E. — A relativists toolkit | 11 |
Greenberg M.D. — Advanced engineering mathematics | 605 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 614; (Exercise 6) |
Born M. — Atomic Physics | 270, 271 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 189 |
Bailin D., Love A. — Introduction to Gauge Field Theory | 23 |
Greiner W., Muller B. — Gauge theory of weak interactions | 6ff, 95ff, 217, 393 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 152 |
Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors) | 300, 308, 310, 316 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-15-3, I-17-1, I-34-8, I-52-2, II-25-1 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 276 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 53, 57 |
Woodhouse N.M.J. — Special Relativity | 10 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 560 |
Mercier A. — Analytical and canonical formalism in physics | 53, 55, 56, 57, 81, 127 |
Dutra S.M. — Cavity quantum electrodynamics | 78 |
Logan J.D. — Invariant Variational Principles | 86 |
Lee T.D. — Practicle physics and introduction to field theory | 215 |
Jackson J.D. — Classical electrodynamics | 356, see also “Relativistic transformation” |
Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 150 |
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 750 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 129—130, 133—135, 159 |
Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 73—74, 89, 94, 134 |
Eddington A.S. — Philosophy of Physical Science | 56 |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 120 |
Stratton J.A. — Electromagnetic Theory | 77, 78, 81, 475 |
Strelkov S.P. — Mechanics | 522 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 152 |
Greiner W. — Classical electrodynamics | 458 |
D'Inverno R. — Introducing Einstein's Relatvity | 16, 25-8, 29-41, 109-11, 118, 119, 160 |
Berry M. — Principles of cosmology and gravitation | 23—24, 35, 43, 49 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 19 |
Tolman R.C. — Relativity, thermodynamics, and cosmology | 18 |
Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 5, 31 |
Houston W.V. — Principles of Mathematical Physics | 247 |
Straumann N. — General relativity and relativistic astrophysics | 147 |
Rosenfeld B. — Geometry of Lie Groups | 216 |
Weyl H. — Space, Time, Matter | 166 |
Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 79 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 67, 68 |
Sternberg S. — Group Theory and Physics | 7 |
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 129—138 |
Fernow R.C. — Introduction to experimental particle physics | 5, 6 |
Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 415, 419, 425 (see also Transformations) |
Bayin S.S. — Mathematical Methods in Science and Engineering | 199 |
Woodhouse N.M.J. — Geometric quantization | 108 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 12, 20, 127, 129, 130, 270, 455, 482, 483, 497 |
Padmanabhan T. — Cosmology and Astrophysics through Problems | 135 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 9, 66 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 10 |
Ohanian H.C. — Classical Electrodynamics | 171, 172 |
Messiah A. — Quantum mechanics. Volume 1 | 383 |
Schwartz M. — Principles of electrodynamics | 110ff |
Thomas T. Y. — The elementary theory of tensors with applications to geometry and mechanics. | 90 |
Bapat R.B., Raghavan T.E.S. — Nonnegative Matrices and Applications | 52 |
Stratton J.A. — Electromagnetic Theory | 77, 78, 81, 475 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 66 |
Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 296 |
Compton A.H. — X-rays and electrons. An outline of recent X-ray theory | 365 |
Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 286 |
Wilson W. — Theoretical physics - Relativity and quantum dynamics | 7, 9, 10, 23, 50 |
Eddington A.S. — The mathematical theory of relativity | 17, 25 |
Morse P.M. — Methods of theoretical physics | 94—100 |
Bethe H., de Hoffmann F. — Mesons and fields. Volume 2. Mesons | 4 |
Littlewood D.E. — The Skeleton Key of Mathematics | 96 |
Mario Bunge — Foundations of Physics | 189—190 |
Ugarov V.A. — Special Theory of Relativity | 52, 59, 63, 66, 70, 114, 320, 367 |
Greiner W., Reinhardt J. — Field quantization | 97, 148, 272 |
Richards P.I. — Manual of Mathematical Physics | 111 |
Podgorsak E. — Radiation Physics for Medical Physicists | 23, 24, 388 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 286, 293, 305 |
Lounesto P. — Clifford algebras and spinors | 120 |
Thaller B. — The Dirac equation | 44, 304 |
Leighton R.B. — Principles of Modern Physics | 8 |
Mandl F. — Quantum mechanics | 49 |
Frankel T. — The geometry of physics: an introduction | 46, 198 |
Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 63, 304, 305, 308, 310, 482 |
Naber G.L. — Topology, Geometry and Gauge Fields | 191 |
Griffits D.J. — Introductions to electrodynamics | 493, 500, 543 |
Eddington A.S. — Mathematical Theory of Relativity | 17, 25 |
HarrisR. — Nonclassical physics: beyond Newton's view | 9—13, 44, 45, 47, 551—553 |
Schutz B.F. — A first course in general relativity | 1, 18, 23, 24, 25, 33, 35, 37, 38, 48, 53, 55, 56, 58, 117, 128, 160, 194, 202, 339 |
Amelino-Camelia G., Kowalski-Glikman J. — Planck Scale Effects in Astrophysics and Cosmology (Lecture Notes in Physics) | 247, 250 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 2, 84 |
Moriyasu K. — An Elementary Primer for Gauge Theory | 7 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 306 |
Synge J.L., Griffith B.A. — Principles of Mechanics | 480—491, 498 |
Greiner W. — Relativistic quantum mechanics. Wave equations | 127, 137 |
Adams S. — Relativity: An Introduction to Space-Time Physics | 109—118, 121, 131, 148, 153, 161, 223 |
Miller W. — Symmetry and Separation of Variables | 223 |
Wald R.M. — General Relativity | 6, 350—352 |
Synge J.L. — Relativity: The Special Theory | 69ff |
Bluman G.W. — Similarity Methods for Differential Equations | 255 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 69, Exercise 6 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 149 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 243—247 |
Snygg J. — Clifford algebra: a computational tool for physicists | 26, 308 |
Constantinescu F., Magyari E. — Problems in quantum mechanics | 337 |
Lancaster P. — Mathematics: Models of the Real World | 150 |
John F. — Partial Differential Equations | 139 |
Giles R. — Mathematical foundation of thermodynamics | 164, 224 |
Bunge M. — Foundations of Physics | 189—190 |
Frankel T. — The geometry of physics: An introduction | 46, 198 |
Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-15-3, I-17-1, I-34-8, I-52-2, II-25-1 |
Berry M.V. — Principles of Cosmology and Gravitation | 23—24, 35, 43, 49 |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 9 |
Snygg J. — Clifford algebra: a computational tool for physicists | 26, 308 |
Kane G.L. — Modern elementary particle physics | 66 |
Schutz B. — Geometrical Methods in Mathematical Physics | 67, 219 |
Bettini A. — Introduction to Elementary Particle Physics | 1, 52 |
Davis P.J. — Mathematics of Matrices | 335 |
Zorich V.A., Cooke R. — Mathematical analysis II | 595 |
Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 12, 13, 306 |
Zorich V. — Mathematical Analysis | 595 |
Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 114 |
Synge J. L. — Tensor Calculus | 140, 231 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 66 |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 166—168, 179 |
Jackson J.D. — Classical electrodynamics | 524f, see also "Relativistic transformation" |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 488—490 |
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 136, 326—343, 350—369 |
Edwards D.A., Syphers M.J. — An introduction to the physics of high energy accelerators | 5 |
Schiffer M.M. — The role of mathematics in science | 190, 193, 195, 197, 198 |
Liboff R.L. — Introductory quantum mechanics | 638 |
Robert E Marshak — Meson physics | 75, 77, 298 |
De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45) | 195 |