| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 57 |
| Apostol T.M. — Calculus (vol 1) | 614 (Exercise 6) |
| Apostol T.M. — Calculus (vol 2) | 69 (Exercise 6) |
| Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 39, 47 (see also “Invariance proper and improper”) |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 359.B |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 94—100 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 94—100 |
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 37 |
| Hamilton W.R. — The collected mathematical papers. Volume 3: algebra | 643 |
| Meirovitch L. — Methods of analytical dynamics | 5—6, 8 |
| Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 107 |
| Cox D., Katz S. — Mirror symmetry and algebraic geometry | 415 |
| Felsager B. — Geometry, particles and fields | 287 |
| Hoffman K., Kunze R. — Linear algebra | 311 (Ex. 15), 382 |
| Jennings G.A. — Modern Geometry with Applications | 159—165, 169 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 259, 261, 262, 472 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 280—265 |
| Jensen F. — Introduction to Computational Chemistry | 204 |
| Artin M. — Algebra | 271 |
| Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 317 |
| Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 5, 31 |
| Hand L.N., Finch J.D. — Analytical Mechanics | 498—501, 503—504, 555—556, 544 (prob) |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 500 |
| Von Laue M. — History of Physics | 59, 72—73 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 718, 1278 |
| Reid M., Szendroi B. — Geometry and Topology | 47, 54, 92, 144 |
| Browne M.E. — Schaum's outline of theory and problems of physics for engineering and science | 391 |
| Bapat R.B., Raghavan T.E., Rota G.C. (Ed) — Nonnegative Matrices and Applications | 52 |
| Fock V. — The Theory of Space Time and Gravitation | 16—18, 368 |
| Rutherford D.E. — Vector Methods | 129 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 221 |
| Araki H. — Mathematical Theory of Quantum Fields | 60 |
| Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 46, 51 |
| Eringen A.C. — Mechanics of continua | 433 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 56 |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 120 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 386, 756 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 386 |
| Greiner W. — Classical mechanics. Point particles and relativity | 370, 378 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 191 |
| Shiffer M.M., Bowden L. — Role of Mathematics in Science | 190,193, 195, 197,198 |
| Eschrig H. — The Fundamentals of Density Functional Theory | 164 |
| Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 27 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 15—3,17—1, 34—8, 52—2 |
| Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 186 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 56 |
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 6, 12 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
| Coxeter H.S.M. — Introduction to Geometry | 206 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 359.B |
| Menzel D.H. — Mathematical Physics | 383 |
| Brown L.S. — Quantum Field Theory | 175 |
| Thaller B. — The Dirac equation | 44, 304 |
| Poisson E. — A relativists toolkit | 11 |
| Greenberg M.D. — Advanced engineering mathematics | 605 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 614; (Exercise 6) |
| Born M. — Atomic Physics | 270, 271 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 189 |
| Bailin D., Love A. — Introduction to Gauge Field Theory | 23 |
| Greiner W., Muller B. — Gauge theory of weak interactions | 6ff, 95ff, 217, 393 |
| Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 152 |
| Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors) | 300, 308, 310, 316 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-15-3, I-17-1, I-34-8, I-52-2, II-25-1 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 276 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 53, 57 |
| Woodhouse N.M.J. — Special Relativity | 10 |
| Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 560 |
| Mercier A. — Analytical and canonical formalism in physics | 53, 55, 56, 57, 81, 127 |
| Dutra S.M. — Cavity quantum electrodynamics | 78 |
| Logan J.D. — Invariant Variational Principles | 86 |
| Lee T.D. — Practicle physics and introduction to field theory | 215 |
| Jackson J.D. — Classical electrodynamics | 356, see also “Relativistic transformation” |
| Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 150 |
| Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 750 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 129—130, 133—135, 159 |
| Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 73—74, 89, 94, 134 |
| Eddington A.S. — Philosophy of Physical Science | 56 |
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 120 |
| Stratton J.A. — Electromagnetic Theory | 77, 78, 81, 475 |
| Strelkov S.P. — Mechanics | 522 |
| Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 152 |
| Greiner W. — Classical electrodynamics | 458 |
| D'Inverno R. — Introducing Einstein's Relatvity | 16, 25-8, 29-41, 109-11, 118, 119, 160 |
| Berry M. — Principles of cosmology and gravitation | 23—24, 35, 43, 49 |
| Greiner W., Mueller B. — Quantum mechanics: symmetries | 19 |
| Tolman R.C. — Relativity, thermodynamics, and cosmology | 18 |
| Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 5, 31 |
| Houston W.V. — Principles of Mathematical Physics | 247 |
| Straumann N. — General relativity and relativistic astrophysics | 147 |
| Rosenfeld B. — Geometry of Lie Groups | 216 |
| Weyl H. — Space, Time, Matter | 166 |
| Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 79 |
| Auletta G. — Foundations and Interpretation of Quantum Mechanics | 67, 68 |
| Sternberg S. — Group Theory and Physics | 7 |
| Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 129—138 |
| Fernow R.C. — Introduction to experimental particle physics | 5, 6 |
| Bogoliubov N.N., Shirkov D.V. — Introduction to the Theory of Quantized Fields | 415, 419, 425 (see also Transformations) |
| Bayin S.S. — Mathematical Methods in Science and Engineering | 199 |
| Woodhouse N.M.J. — Geometric quantization | 108 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 12, 20, 127, 129, 130, 270, 455, 482, 483, 497 |
| Padmanabhan T. — Cosmology and Astrophysics through Problems | 135 |
| Landau L.D., Lifshitz E.M. — The classical theory of fields | 9, 66 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 10 |
| Ohanian H.C. — Classical Electrodynamics | 171, 172 |
| Messiah A. — Quantum mechanics. Volume 1 | 383 |
| Schwartz M. — Principles of electrodynamics | 110ff |
| Thomas T. Y. — The elementary theory of tensors with applications to geometry and mechanics. | 90 |
| Bapat R.B., Raghavan T.E.S. — Nonnegative Matrices and Applications | 52 |
| Stratton J.A. — Electromagnetic Theory | 77, 78, 81, 475 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 66 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 296 |
| Compton A.H. — X-rays and electrons. An outline of recent X-ray theory | 365 |
| Fluegge S. (ed.) — Encyclopedia of physics. Vol. 9. Fluid dynamics III | 286 |
| Wilson W. — Theoretical physics - Relativity and quantum dynamics | 7, 9, 10, 23, 50 |
| Eddington A.S. — The mathematical theory of relativity | 17, 25 |
| Morse P.M. — Methods of theoretical physics | 94—100 |
| Bethe H., de Hoffmann F. — Mesons and fields. Volume 2. Mesons | 4 |
| Littlewood D.E. — The Skeleton Key of Mathematics | 96 |
| Mario Bunge — Foundations of Physics | 189—190 |
| Ugarov V.A. — Special Theory of Relativity | 52, 59, 63, 66, 70, 114, 320, 367 |
| Greiner W., Reinhardt J. — Field quantization | 97, 148, 272 |
| Richards P.I. — Manual of Mathematical Physics | 111 |
| Podgorsak E. — Radiation Physics for Medical Physicists | 23, 24, 388 |
| Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 286, 293, 305 |
| Lounesto P. — Clifford algebras and spinors | 120 |
| Thaller B. — The Dirac equation | 44, 304 |
| Leighton R.B. — Principles of Modern Physics | 8 |
| Mandl F. — Quantum mechanics | 49 |
| Frankel T. — The geometry of physics: an introduction | 46, 198 |
| Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 63, 304, 305, 308, 310, 482 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 191 |
| Griffits D.J. — Introductions to electrodynamics | 493, 500, 543 |
| Eddington A.S. — Mathematical Theory of Relativity | 17, 25 |
| HarrisR. — Nonclassical physics: beyond Newton's view | 9—13, 44, 45, 47, 551—553 |
| Schutz B.F. — A first course in general relativity | 1, 18, 23, 24, 25, 33, 35, 37, 38, 48, 53, 55, 56, 58, 117, 128, 160, 194, 202, 339 |
| Amelino-Camelia G., Kowalski-Glikman J. — Planck Scale Effects in Astrophysics and Cosmology (Lecture Notes in Physics) | 247, 250 |
| Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 2, 84 |
| Moriyasu K. — An Elementary Primer for Gauge Theory | 7 |
| Laurens Jansen — Theory of Finite Groups. Applications in Physics | 306 |
| Synge J.L., Griffith B.A. — Principles of Mechanics | 480—491, 498 |
| Greiner W. — Relativistic quantum mechanics. Wave equations | 127, 137 |
| Adams S. — Relativity: An Introduction to Space-Time Physics | 109—118, 121, 131, 148, 153, 161, 223 |
| Miller W. — Symmetry and Separation of Variables | 223 |
| Wald R.M. — General Relativity | 6, 350—352 |
| Synge J.L. — Relativity: The Special Theory | 69ff |
| Bluman G.W. — Similarity Methods for Differential Equations | 255 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 69, Exercise 6 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 149 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 243—247 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 26, 308 |
| Constantinescu F., Magyari E. — Problems in quantum mechanics | 337 |
| Lancaster P. — Mathematics: Models of the Real World | 150 |
| John F. — Partial Differential Equations | 139 |
| Giles R. — Mathematical foundation of thermodynamics | 164, 224 |
| Bunge M. — Foundations of Physics | 189—190 |
| Frankel T. — The geometry of physics: An introduction | 46, 198 |
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-15-3, I-17-1, I-34-8, I-52-2, II-25-1 |
| Berry M.V. — Principles of Cosmology and Gravitation | 23—24, 35, 43, 49 |
| Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 9 |
| Snygg J. — Clifford algebra: a computational tool for physicists | 26, 308 |
| Kane G.L. — Modern elementary particle physics | 66 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 67, 219 |
| Bettini A. — Introduction to Elementary Particle Physics | 1, 52 |
| Davis P.J. — Mathematics of Matrices | 335 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 595 |
| Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 12, 13, 306 |
| Zorich V. — Mathematical Analysis | 595 |
| Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 114 |
| Synge J. L. — Tensor Calculus | 140, 231 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 66 |
| Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 166—168, 179 |
| Jackson J.D. — Classical electrodynamics | 524f, see also "Relativistic transformation" |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 488—490 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 488—490 |
| Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 136, 326—343, 350—369 |
| Edwards D.A., Syphers M.J. — An introduction to the physics of high energy accelerators | 5 |
| Schiffer M.M. — The role of mathematics in science | 190, 193, 195, 197, 198 |
| Liboff R.L. — Introductory quantum mechanics | 638 |
| Robert E Marshak — Meson physics | 75, 77, 298 |
| De Witt L. Sumners — New Scientific Applications of Geometry and Topology (Proceedings of Symposia in Applied Mathematics, V. 45) | 195 |