|
|
 |
| Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Density of states
| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | | Sornette D. — Critical phenomena in natural sciences | | | Schmalzried H. — Chemical Kinetics of Solids | 98 | | Parr R., Yang W. — Density-functional theory of atoms and molecules | 48, 108 | | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 199 | | Stauffer D., Aharony A. — Introduction To Percolation Theory | 126 | | Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 228 | | Kossevich A.M. — Crystal Lattice: Phonons, Solitons, Dislocations | 111 | | Honerkamp J. — Statistical Physics | 53 | | Chow W.W., Koch S.W. — Semiconductor-laser fundamentals | 25 | | Elliott R.J., Gibson A.F. — An Introduction to Solid State Physics and Its Applications | 43, 101, 105, 123, 130, 219 | | Ott E. — Chaos in dynamical systems | 336—338, 345—351 | | Greiner W. — Quantum mechanics. An introduction | 22, 135, 306, 316 | | Getzlaff M. — Fundamentals of Magnetism | 26, 154, 261, 273, 275 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | 313 | | Imry Y. — Introduction to Mesoscopic Physics | 16, 202—204 | | Isihara A. — Statistical physics | 83 | | Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 35, 37—40, 63, 161, 167—168, 173, 191, 200 | | Ziman J.M. — Elements of Advanced Quantum Theory | 109, 131, 134 | | Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 30 | | Moss T. — Photoconductivity In The Elements | 9 | | Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 14 | | Stauffer D., Aharony A. — Introduction to percolation theory | 126 | | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 8, 89, 133, 306, 325 | | Hughes I.S. — Elementary Particles | 66, 67 | | Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 92—96, 98, 101, 103, 113—114, 211—212, 266 | | Cleland A.N. — Foundations of nanomechanics | 34 | | Meschede D. — Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics | 395 | | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | see also “Modular functions” | | Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics | 10, 4.2, 4.6, 4.12 | | Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 87—90, 95—98 | | Rickayzen G. — Green's functions and condensed matter | 35, 286—289, 294—295 | | Cracknell A.P., Wong K.C. — The Fermi Surface: Its Concept, Determination and Use in the Physics of Metals | 118—123, 147, 156—165, 167, 313, 410, 416 | | Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 8, 15, 44, 57, 67, 76, 96, 102, 137, 165, 168, 229, 233, 382 | | Kittel Charles, Kroemer Herbert — Thermal Physics | 186 | | Cowan B. — Topics In Statistical Mechanics | 54, 57 | | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | see “Level density” | | Poole Jr.C.P., Owens F.J. — Introduction to Nanotechnology | 234—237, 241 | | Griffits D. — Introduction to elementary particles | 194 (see also “Phase space”) | | Dresselhaus M.S., Dresselhaus G., Avouris Ph. — Carbon nanotubes | 180, 183, 194, 210 | | Gautreau R., Savin W. — Schaum's Outline of Modern Physics | 270, 273, 274, 276, 288, 298 | | Deák P. — Computer Simulation of Materials at Atomic Level | 29, 393 | | Park D. — Introduction to the quantum theory | 324, 378, 588 | | Efros A.L. (ed.), Pollak M. (ed.) — Electron-electron interactions in disordered systems | 5, 27-33, 36-43, 45-51, 54, 55, 79-83, 95-99, 104, 110, 113, 137, 294-295, 317-318, 321-323, 341-346, 350, 404, 567, 580 (see also “Energy levels”) | | Nakamura K., Harayama T. — Quantum chaos and quantum dots | 61, 72 | | Bernstein R.B. — Atom-Molecule Collision Theory: Guide for the Experimentalist | 702, 721, 739 | | Economou E.N. — Green's Functions in Quantum Physics | 7, 16, 42, 46, 51, 72, 78, 91, 104, 157, 166, 167, 211, 268, 433 | | Pfeiler W. — Alloy Physics: A Comprehensive Reference | 27, 28, 29, 36 | | Zory P.S. — Quantum well lasers | 8—9, 20—24, 75, 104, 136—138, 142, 191, 462, 465—466, 488 | | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 80, 89 | | L. Pitaevskii, Stringari S. — Bose-Einstein Condensation | 151, 214 | | Berezin F.A., Shubin M.A. — The Schroedinger equation | 211 | | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 152, 172, 246, 266-271, 311, 318, 327-329, 396-398, 402, 545 | | Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 238 | | Cotterill R.M.J. — Biophysics: An Introduction | 133 | | Basdevant J.-L., Dalibard J. — Quantum Mechanics | 77, 344, 363 | | Murrel J.N., Bosanac S.D. — Introduction to the Theory of Atomic and Molecular Collisions | 139 | | Pathria P.K. — Statistical Mechanics | 20, 56, 59—60, 230, 250—252 | | Hercules Proceedings (Vol. I) (unknown book) | 378, 309, 310, 311 | | Fox M. — Optical properties of solids | 19, 51-54, 94, 99, 128, 137, 152-3, 187,234, 266-7 | | Phillips P. — Advanced Solid State Physics | 60-63, 69 | | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 213, 321 | | Ashcroft N.W., Mermin N.D. — Solid State Physics | see "Density of levels" | | Eliezer Sh., Ghatak A., Hora H. — Fundamentals of Equations of State | 321 | | Mourachkine A. — High-Temperature Superconductivity in Cuprates: The Nonlinear Mechanism and Tunneling Measurements | 16, 18, 28, 31, 82, 125, 128, 137—138, 148—149, 184, 259, 268, 270, 273, 297, 303—301 | | Padmanabhan T. — Cosmology and Astrophysics through Problems | 20, 186 | | Richter K. — Semiclassical theory of mesoscopic quantum systems | 24, 35, 93, 107 | | Mullin T. — The nature of chaos | 288 | | Dekker A.J. — Solid State Physics | 256, 264, 265, 268 | | Azaroff L.V. — Introduction to Solids | 253—254, 316 | | Callen H. — Thermodynamics and an Introduction to Thermostatistics | 362 | | Jones H. — Theory of Brillouin Zones and Electronic States in Crystals | 49 | | Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 443 | | Busch K., Lolkes S., Wehrspohn R.B. — Photonic Crystals. Advances in Design, Fabrication, and Characterization | 4 | | Brout R., Carruthers P. — Lectures on the many-electron problem (Interscience monographs and texts in physics and astronomy) | 123 | | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 241, 129 | | Reif F. — Fundamentals of statistical and thermal physics | 61 | | Bransden B., Joachain C. — Physics of Atoms and Molecules | 115, 165, 309—10 | | Ram-Mohan R. — Finite Element and Boundary Element Applications in Quantum Mechanics | 174 | | Zallen R. — The Physics of Amorphous Solids | 234, 235, 254—258, 290, 291 | | Brewer D.F. — Progress in Low Temperature Physics. Volume X | 395 | | Hugh D. Young, Roger A. Freedman — University physics with modern physics | 1448 | | Marder M.P. — Condensed matter physics | 139—143, 152 | | Mandl F. — Quantum mechanics | 42—43, 148 | | Datta S. — Electronic transport in mesoscopic systems | 13, 27, 45, 149, 154, 161—162, 231, 255, 301 | | Goldsmid J., Drabble H. — Thermal Conduction in Semiconductors | 53, 78 | | HarrisR. — Nonclassical physics: beyond Newton's view | 358—359, 372—373, 378—379, 383, 394, 438 | | Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 33, 35, 57 | | Ashby N., Miller S.C. — Principles of modern physics | 288 | | Arnold L. (Ed), Wihstutz V. (Ed) — Lyapunov Exponents: Proceedings of a Workshop Held in Bremen | 243, 254 | | Yariv A. — Quantum Electronics | 267 | | Salmhofer M. — Renormalization: an introduction | 127 | | Pan G.W. — Wavelets in Electromagnetics and Device Modeling | 513, 516 | | Wilson A.H. — The Theory of Metals | 43, 104 | | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 677 | | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 341, 343 | | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 341, 343 | | Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | 195—196, 202 | | Zory P.S. (ed.), Kelley P. (ed.), Liao P.F. (ed.) — Quantum Well Lasers | 8—9, 20—24, 75, 104, 136—138, 142, 191, 462, 465—466, 488 | | Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 290, 292 | | Morandi G. — Statistical Mechanics: An Intermediate Course | 75, 303 | | Kleinert H. — Gauge fields in condensed matter (part 2) | 313 | | Ehrenberg W. — Electric Conduction in Semiconductors and Metals | 91, 117 | | Park R., Lagally M. — Methods of Experimental Physics.Volume 22.Solid State Physics:Surfaces. | 145, 147, 150, 151, 154, 171, 173, 200, 202 | | Springford M. — Electrons at Fermi surface | 75—77, 89, 194—197, 253, 255 | | Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 324, 378, 588 | | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 38, 266—267, 333, 447 | | Melissinos A.C. — Principles of modern technology | 10 | | Lipparini E. — Modern many-particle physics: atomic gases, quantum dots and quantum fluids | 381 | | Kittel C. — Introduction to solid state physics | 128, 149 | | Plischke M., Bergersen B. — Equilibrium statistical physics | 517—530 | | Lilley J.S. — Nuclear physics: principles and applications | 75, 333 | | Honerkamp J. — Statistical physics: an advanced approach with applications | 53 | | Liboff R.L. — Introductory quantum mechanics | 60p, 62p, 591p | | Rosser W.G.V. — An introduction to statistical physics | 91, 92, 94, 246, 282, 289, 300, 356, 367 | | H. Fehske, R. Schneider, A. Weile — Computational Many-Particle Physics | 480, 485—488, 491, 497, 507, 555, 622 |
|
|