|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Euler, Leonhard
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Gardner M. — Wheels, life, and other mathematical amusements | 13, 14, 16 | Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 135 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 4.C 16.E 20 38 46.A, B 56.B, F 65.A 83.A 90.C 93.C 107.A, E 126.A 131.D, G 141 145 165.A, r 174.A, C 177.C, D 181 186.A, F 201.B, F, N 204.E 205.A, B 240.A 241.B 266 271.E, F 275.A 294.A 295.C, E 296.A 297.D, H 303.D, E 320.D 332 379.I-K 419.B 420.B 432.C 441.B 450.B App. A, Tables 3.V, 14.I App. B, Tables 3.I, 6.IV | Hilgert J. — Analysis I - IV | 110 | Rockett A.M., Szusz P. — Continued Fractions | 18, 40, 51, 64, 66, 69 | Apostol T.M. — Introduction to Analytic Number Theory | 4, 5, 7, 9, 19, 25, 53, 54, 113, 180, 185, 230, 308, 312, 315 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | i, vii, ix, 6, 48, 122, 131, 133, 134, 205, 207, 210, 232, 253, 263, 264, 272, 285, 287, 289, 455, 457, 499, 514, 550, 577, 579, 584—585, 602—604 | Coxeter H.S.M. — Non-Euclidean Geometry | 109 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 62, 68, 90, 149, 196n | Anderson J.D. — Modern Compressible Flow: With Historical Perspective | 202, 203—205 | Maeder R.E. — Computer science with mathematica | 10 | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 4 | Merris R. — Combinatorics | 17, 151, 217, 449, 451 | Ewald W. — From Kant to Hilbert, Vol.2 | 11, 155, 171, 225, 227, 286, 316, 328, 411, 418, 433, 434, 436, 516, 517, 518, 562, 565, 611, 753, 761, 764, 1102, 1164 | Kline M. — Mathematics in Western Culture | 228, 232, 291 | Buzaglo M. — Logic of Concept Expansion | 14, 90—91, 130n | Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 3 | Ewald W. — From Kant to Hilbert, Vol.1 | 11, 155, 171, 225, 227, 286, 316, 328, 411, 418, 433, 434, 436, 516, 517, 518, 562, 565, 611, 753 | Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 13 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 609, 613n | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 34, 46, 56, 106, 136, 222—223 | Leng M. (ed.), Paseau A. (ed.), Potter M. (ed.) — Mathematical Knowledge | 35, 61, 62 | Lozansky E., Rousseau C. — Winning Solutions | 35 | Bauer F.L. — Decrypted Secrets: Methods and Maxims of Cryptology | 11, 8,157 | Pickover C.A. — Mobius Strip: Dr. August Mobius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology | 66—67, 74, 90, 103 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 228—229 | Olds C.D., Davidoff G. — Geometry of Numbers | 97, 107 | Dawson Jh.W. — Logical Dilemmas: The Life and Work of Kurt Godel | [98] | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 614, 623, 739, 918, 948, 1029, 1163, 1164 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 97, 122, 251 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 79 | Siegfried T. — A Beautiful Math John Nash, Game Theory, and the Modern Quest for a Code of Nature | 148 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 43 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 67 | Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 42, 105, 138 | Rainville E.D. — Special Functions | 1, 8—9, 11—12, 15, 26—27, 31, 47, 60, 300 | Nasar S. — A Beautiful Mind | 230 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 3, 73, 75, 143, 144, 184, 257, 273, 276 | Apostol T.M. — Modular Functions and Dirichlet Series in Number Theory | 94 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 614, 623, 739, 918, 948, 1029, 1163—1164 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:158, 1:336, 4:3014, 6:4095 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 58, 60, 62, 65, 80, 81, 110, 145, 153, 154—155, 159, 181, 186, 229, 230, 246, 247, 252, 253, 270, 278, 286, 291, 312, 318, 322, 323, 334, 359, 398, 399, 401, 428, 433, 434, 438, 440, 442, 447, 449, 451 | Zajac A. — Optics | 4, 110 | Guy R.K. — Unsolved Problems in Number theory | A1, B48, D1, D9, D17, D18, D20, D21, D22 | Phillips G.M. — Interpolation and Approximation by Polynomials | 133, 295, 299 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 614, 623, 739, 918, 948, 1029, 1163—1164 | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 3, 394 | von zur Gathen J., Gerhard J. — Modern computer algebra | 55, 57, 70, 81—84, 122, 123, 125, 186, 187, 348, 394, 487, 494, 507, 516, 560, 608, 634, 699, 705, 706, 714, 721 | Truesdell C. — Essays in the History of Mechanics | 90, 97, 99, 106—110, 113—135, 137, 149, 162—173, 175, 177, 182—183, 188, 192—194, 214—215, 218, 225, 227—228, 230—234, 236, 243, 246, 248—249, 252, 254—263, 268—269, 271, 274—276, 281—282, 288—289, 291—292, 299, 305—306, 309, 311—313, 318—319, 322 | Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 48, 51, 56, 86, 108, 110, 373, 405, 494, 531 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 340, 360, 361, 391, 602 | Kasner E., Newman J. — Mathematics and the Imagination | 85—86, 92, 93, 103, 156, 185, 265—268, 269, 290—291 | Krantz S.G. — Techniques of Problem Solving | 196 | Lyons R.G. — Understanding Digital Signal Processing | 460 | Coxeter H.S.M. — Regular Polytopes | 55, 166, 311 | Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching) | 8—9, 19—21, 35, 38—39, 395, 594, 726 | Rockmore D. — Stalking the Riemann Hypothesis | 97, 122, 251 | Berg M.C. — The Fourier-Analytic Proof of Quadratic Reciprocity | xiii, xviii, 1 &c | Englert B.G. (Ed) — Quantum Mechanics | 64 | Tignol J.-P. — Galois' Theory of Algebraic Equations | 56, 73, 80, 96, 110, 115, 171, 205, 206 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 1 | 401 | D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 147, 155, 244, 193, 203, 205, 244 | Bellman R. — Algorithms, graphs, and computers, Volume 62 (Mathematics in Science and Engineering) | 36, 48 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 149 | Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 49, 50, 52, 57, 75, 76, 87, 111, 374, 407, 472, 496, 536, 600 | Dunn F., Parberry I. — 3D Math Primer for Graphics and Game Development | 153, 162 | Cotterill R.M.J. — Biophysics: An Introduction | 114 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 74, 83, 85, 91, 92 | Greene B. — The elegant univerce | 137 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 31—34, 102, 143—150 passim, 185, 275, 280—283, 388-, 391 | Thompson Philip A. — Compressible-fluid dynamics | 2, 16, 19n., 36, 162 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 143, 223, 224 | Truesdell C.A., Wang C.C. — Rational Thermodynamics | 3, 4, 17, 60, 157, 185, 188, 411 | Beaumont R.A., Pierce R.S. — The Algebraic Foundations of Mathematics | 189 | Milnor J., Husemoller D. — Symmetric Bilinear Forms | 39 | Blom G., Holst L., Sandell D. — Problems and Snapshots from the World of Probability | 50 | Marks R.J.II. — The Joy of Fourier | 551, 552, 566 | Coxeter H.S.M. — The Real Projective Plane | 2, 122, 180 | Hancock H. — Elliptic Integrals | 7 | Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 20, 53, 58, 60, 62, 63, 234, 247, 257 | Enderton H.B. — A Mathematical Introduction to Logic | 5, 173 | Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century | xvii, 164 | Coxeter H. — Regular polytopes | 55, 166, 311 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 18, 19, 99, 148, 202, 215, 216, 234, 282, 284, 286 ff., 296, 297, 301, 302 | Borovik A.V. — Mathematics under the microscope | 26, 102 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | I. 401 | Goodman A.W. — The Pleasures of Math | 15, 26, 167 | Cantor G. — Contributions to the Founding of the Theory of Transfinite Numbers | 4, 5, 9, 10 | Marsden J., Weinstein A. — Calculus 1 | 251fn, 252fn | Kasner E., Newman J. — Mathematics and the imagination | 85—86, 92, 93, 103, 156, 185, 265—268, 269, 290—291 | Ore O. — Number theory and its history | 59—64, 73, 74, 78, 81, 84, 93, 100, 110, 126—128, 131, 132, 138, 141, 198, 199, 206, 208, 211, 245, 249, 272, 273, 277, 297 | Katz V.J. — A History of Mathematics: An Introduction | 544 | McKeague C. P. — Trigonometry | 442 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 23, 103, 114 | Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | x, 13, 17, 23, 72, 89 | Gries D. — A Logical Approach to Discrete Math | 426, 431 | Mott J.L., Kandel A., Baker T.P. — Discrete Mathematics For Computer Scientists And Mathematicians | 535 | Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians | 535 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 11, 155, 171, 225, 227, 286, 316, 328, 411, 418, 433, 434, 436, 516, 517, 518, 562, 565, 611, 753, 761, 764, 1102, 1164 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 9, 15, 40, 55—56, 58, 59, 60, 61—62, 65, 75—76, 87, 88, 95, 97, 98, 100, 106, 121, 146—147, 374, pl. 1 | Zeidler E. — Oxford User's Guide to Mathematics | 3, 35, 51, 56, 112, 228, 386, 496, 532, 572, 574, 684, 692, 696, 699, 710, 715, 767, 769, 802, 803, 806, 828, 909, 1187 | Dorrie H. — 100 Great Problems of Elementary Mathematics: Their History and Solution | 19—27, 44—48, 55, 78—85, 96, 97, 104, 136, 141—142, 184, 192, 285—289, 356, 359 | Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 520 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 150, 188, 236 | Gossett E. — Discrete Math with Proof | 8, 73, 121, 405, 427, 590, 732 | Adler A., Coury J. — The Theory of Numbers. A Text and Source Book of Problems | 99 | Kline M. — Mathematics for the Nonmathematician | 24, 411, 437 | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 70, 233, 259, 262, 264, 351 | Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 281 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 37, 54, 135 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 138—156, 176, 201, 219 | Burks A.R., Burks A.W. — The First Electronic Computer: The Atanasoff Story | 335 | Posamentier A.S. — The Fabulous Fibonacci Numbers | 120, 165n2, 296 | Krantz S. — Mathematical apocrypha redux | 214, 21, 237, 252 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 11, 155, 171, 225, 227, 286, 316, 328, 411, 418, 433, 434, 436, 516, 517, 518, 562, 565, 611, 753 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 35, 88, 163, 280—281, 342, 344, 358, 375, 469 | Higgins P. — Mathematics for the curious | 77, 87, 100, 128, 141 | D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 147, 155, 244, 193, 203, 205, 244 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 37, 54, 135 | Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 214, 21, 237, 252 | Kline M. — Mathematical thought from ancient to modern times | 614, 623, 739, 918, 948, 1029, 1163, 1164 | Brezinski C. — History of Continued Fractions and Padé Approximants | 40, 42, 46, 58, 61, 79, 96, 97, 111, 113, 118, 121, 124, 125, 126, 131, 132, 147, 148, 172, 173, 179, 181, 190, 197, 226, 250, 307, 308, 324, 373, 374, 464, 475 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 143, 223, 224 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 9, 52, 54, 57, 58, 59, 83, 86, 87, 89, 144, 148, 171, 199, 201, 203, 205, 207—208, 215, 247 | Honsberger R. — Mathematical Gems | 29, 46, 115 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 54, 58, 88—91, 93, 95, 143, 176, 187, 202, 231, 285, 314, 316, 323, 349 | Adler A., Cloury J.E. — Theory of Numbers: A Text and Source Book of Problems | 99 | Knuth D.E. — Selected papers on discrete mathematics | 5, 494, 498, 501, 502, 509, 546, 563, 710 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 19, 26, 47, 55, 65, 126 | Hancock H. — Elliptic Integrals | 7 | Hancock H. — Elliptic integrals | 7 |
|
|