|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Cofman J. — Numbers and shapes revisited: More problems for young mathematicians |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-bonacci sequence 4
-dimensional hypercubes 76—7
-dimensional hypercubes, problems 77—9
-dimensional hypercubes, solutions 237—42
-dimensional Pascal pyramid 82—3
-dimensional real euclidean spaces 71—6
-dimensional ‘map-colouring’ problems 115
-gons see Polygons
24-point sphere [of tetrahedron] 65 224
3-bonacci cuboids 12—13 141—2
3-bonacci hexagon 9 133—5
3-bonacci numbers 9 25—6 125
36 officers problem 103
Affine planes 108 109
Alternating groups 92
Appel, Kenneth 113
Archimedes of Syracuse 66
Associative operations 88 256 257
Barr, Mark 7
Bernoulli, Jakob 33
Besicovitch, A. S. 115
Binary operation 88
Binary relations [on the set] 46
Binet’s formula 6 17 19
Binet’s formula, generalization 252
Binet’s formula, proof 130
Binomial coefficients 81 243
Bos — Shrikhande — Parker theorem 104
Cauchy — Bunyakowski inequality 54
Cauchy, Augustin Louis 52
Cauchy’s inequality 51
Cauchy’s inequality, generalization 53—5
Cauchy’s inequality, problems 51—5
Cauchy’s inequality, proofs 51—2 193—7
Cauchy’s inequality, solutions 193—201
Cayley, Arthur 112
Centroid of tetrahedron 64 220
Centroid of triangle 64
Chinese remainder theorem 45 47—8
Chinese remainder theorem, applications 48—50
Chinese remainder theorem, problems 46—50
Chinese remainder theorem, solutions 187—92
Cissoid of Diodes 59 60 211
Coefficients, binomial 81 243
Coefficients, multinomial 81 243
Coefficients, trinomial 81 243 249
Colouring/painting problems 5—6 103 112—15
Colouring/painting problems, solutions 125—6 287—94
Combinatorics 103—20
Combinatorics, problems 105—12 114 118—21
Combinatorics, solutions 273—300
Congruences 46
Congruences, solution of 47 188 190
Connected graphs 115 116
Continuous functions 44
Coordinate hyperplanes 73
Crum, M. 115
Cubes, doubling of 58—9
Cubes, net of 239
Cubes, problems 62
Cubes, solutions 213—17
De Moivre’s Theorem 228
de Morgan, Augustus 112
Decimal expansions 34
Decimal fractions 32
Dehn, Max 66
Dehn’s condition 66 67 227
Delian problem 58—9
DePalluel 107
Derangements 105 274
Dihedral angles [of polyhedra] 67
Diodes 59
Dodecahedra see Rhombic dodecahedra
Dots, patterns of 20—30
Dots, problems 23—30
Dots, solutions 151—64
Doubling of cube 58—9
Doubling of square 60—1
Equidecomposable shapes 66—9
Equilateral triangle, area 201—2
Equivalent relations 46
Euclid of Alexandria 56 71
Euclidean geometries 71
Euler, Leonhard 23 103 114
Eulerian circuits [of graphs] 116 118 295 296 297 298
Euler’s 36
Euler’s [figurate number] formula 23
Euler’s [figurate number] formula, proof 30 164
Euler’s [map-colouring] theorem 114 118
Euler’s [map-colouring] theorem, proof 119 290—1
Even permutation 92
Exclusion and inclusion, principle of 273
Facets [in hypercubes] 77
Farey series 35 172
Farey series, properties 173
Ferrer graphs 22 27—9 161—2
Ferrer graphs, advantage for studying partitions 27
fibonacci 3
Fibonacci gasket 17
Fibonacci numbers 3 25
Fibonacci numbers, generalized 4 6—8 81 84
Fibonacci numbers, Lucas’ result 85 251
Fibonacci rectangles 6—7 8 131—2
Fibonacci sequence 3—4
Fibonacci sequence, problems 5—19
Fibonacci sequence, solutions 125—50
Fibonacci square 9
Fibonacci triangle 13—14 250
Fibonacci triangle, modulo-2 16 146
Fifteen puzzle 97—8
Fifteen puzzle, problem 98
Fifteen puzzle, solution 266—8
Figurate numbers 20 (see also Pentagonal numbers; square numbers; triangular numbers)
Figurate numbers, Euler’s formula 23 30 164
Finite affine plane 110
Finite group, operation table 107 277—8
Five-colour problem 114
Four-colour problem 112—13
Four-dimensional hypercubes, visualization 79—80
Fractals 4 17
Fractions 31
Full symmetric group 90
Functional equations, groups used in solution 93—5
Gambler’s ruin problem 86—7
Gambler’s ruin problem, solution 252—4
Gardner, Martin 7
Generalized Fibonacci numbers 4 6—8 81 84
Generators of groups 92
Geodesics 231
Geometries, euclidean geometries 71
Golden ratio 7
Golden rectangle 7 10
Golden rectangle, generalization 7—8
Golden rectangle, problem covering 10—11 137—9
Golden spiral 11
graphs 115—17
Graphs, definitions 115—16
Graphs, problems 118—20
Graphs, solutions 295—300
Great circles [of spheres] 70
Gregory, David 69
Group axioms 88
groups 88—102
Groups, alternating groups 92
Groups, and lattice points 96—7
Groups, basic properties 89—92
Groups, generators 92
Groups, meaning of term 88
Groups, permutation groups 90
Groups, problems 89—92 95—7 98—102
| Groups, solutions 255—72
Groups, use for solution of functional equations 93—5
Guthrie, Francis 112
Hlder’s inequality 54
Haken, Wolfgang 113
Hamilton, William Rowan 120
Hamiltonian circuits [of graphs] 120 298—9
Heawood, P. J. 114
Higher-dimensional euclidean geometries 71
Higher-dimensional spaces 71—87
Higher-dimensional spaces, problems 73—80 82—7
Higher-dimensional spaces, solutions 235—54
Hilbert, David 66
Hilbert’s third problem 66
Honeybee cells 61
Hoppe, R. 69
House-painting problems 5—6
House-painting problems, solutions 125—6
Hypercubes 76
Hypercubic lattice paths 80—7
Hyperplanes 73
Inclusion and exclusion, principle of 273
Inequalities 51
Inequalities, problems 51—7
Instant-insanity puzzle 120—1
Instant-insanity puzzle, problem 121
Instant-insanity puzzle, solution 299—300
Inversion, of permutation groups 91
Irrational numbers, Kronecker’s theorem 40—2
Isoperimetric theorem 51
Isoperimetric theorem, problems 56—7
Isoperimetric theorem, proofs 51
Isoperimetric theorem, solutions 201—7
Isoperimetric theorem, special cases 56—7
Isosceles triangle, area 202
Knig 62
Kaplansky 106 276
Kepler, Johannes 61 62
Kronecker, Leopold 37
Kronecker’s theorem 40—2
Kronecker’s theorem, further applications 42—4
Kronecker’s theorem, problems 41—4
Kronecker’s theorem, proof 40—1
Kronecker’s theorem, solutions 182—6
Latin rectangles 115
Latin rectangles, normalized Latin rectangles 105
Latin squares 103—7
Latin squares, mutually orthogonal Latin squares 108 279
Latin squares, orthogonal Latin squares 104
Latin squares, problem 105—12
Latin squares, solutions 273—87
Lattice parallelograms 36 96
Lattice paths 80—7
Lattice paths, problems 82—5 86 87
Lattice paths, solutions 242—52
Lattice points 31 34—6
Lattice points, invisible 49—50
Lattice points, visible 35 48 172
Leonardo of Pisa 3 (see also Fibonacci)
Light rays linear congruences 47
Light rays, reflection 37 (see also Non-periodic light ray paths; reflected)
Logarithmic spiral 11
Lucas, douard 85 106 251
Mnage numbers 106
Mnage numbers, formula 106
Mnage numbers, formula, proof 276
Maclaurin, Colin 212
Mandelbrot, Benoit 17
Map, definitions 113
Map-colouring problems 103 112—15
Map-colouring problems, solutions 287—94
Married-couples problem 106
Married-couples problem, solution 274
Memory wheels 116—17
Memory wheels, problems 118—19
Memory wheels, solutions 294—8
Midspheres 230—1
Monge, point of 65
Multinomial coefficients 81 243
Mutually orthogonal Latin squares 108 279
Natural numbers, partitioning 22 26 28 29—30
Newton, Isaac 60 69
Nine-point circles 64 223
Non-periodic light ray paths 40—2
Normalized Latin rectangles 105
Odd permutation 92
Officers problem 103 104
Operation table of finite group 107 277—8
Operation table of set 255 256
Oriented circuits 116
Oriented graphs 116 295
Orthocentre of tetrahedron 64 65 220—2
Orthocentre of triangle 64
Orthogonal Latin squares 104
Orthogonality condition [for euclidean real planes] 75
Painting/colouring problems 5—6 103 112—15
Painting/colouring problems, solutions 125—6 287—94
Partitions of natural numbers 22 26 28 29—30
Pascal pyramid 82 244
Pascal’s triangle 14 16
Pascal’s triangle, modulo-2 16 145
Pascal’s triangle, problems 14—17 42
Pascal’s triangle, solutions 142—5
Pebble-heap problems 23—6
Pebble-heap problems, solutions 151—60
Pentagonal numbers 20
Pentagonal numbers, generalized 30
Periodic decimal numbers 31—3
Periodic fractions 32
Permutation groups 90
Permutation groups, inversion of 91
Pick’s Theorem 36
Platonic solids 120 298
Platonic solids, problem 120
Platonic solids, solution 298—9 (see also Cubes; dodecahedra; tetrahedral)
Polygons, equidecomposability 66
Polygons, partition of 26
Polyhedra, dihedral angles 67
Polyhedra, equidecomposability 66—9
Principle of inclusion and exclusion 273
Projective planes 108 111
Pyramids, equidecomposability 66 68
Pyramids, volume calculation 66
Pythagorean numbers 20
Raumur, Ren 62
Rado, R. 115
Rational numbers 31
Reading list 301—3
Recurrence relations for Fibonacci numbers 3 4 125 127 148
Recurrence relations, how to solve 17—19
References listed 301—3
Reflected light rays 37
Reflected light rays, problems 37—40
Reflected light rays, solutions 175—81
Repunits 31—3 167
Residue class 46
Rhombic dodecahedra 61—2 120 298
Rubik’s cube 98—101
Rubik’s cube, problems 101—2
Rubik’s cube, solutions 268—72
Seating-arrangement problem 106
Seating-arrangement problem, solutions 274 277
Set, binary operation on 88
Set, operation table for 255 256
Sierpiski gasket 16 17
Sierpiski, Waclaw 17
Silver hexagon, problem covering 11—12 139—41
Silver polygons 8
Sphere-packing problems 69
Spheres, problems 69—70
|
|
|
Ðåêëàìà |
|
|
|