| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 116, 148 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 107, 357, 374, 410 |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 273, 284, 492, 514, 515 |
| van der Dries L. — Tame topology and O-minimal structures | 5, 69—76 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 260, 261, 948, 1053, 1487, 1489, 1492, 1493, 1847 |
| Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 686, 688ff, 692 |
| Lang S. — Algebra | 769 |
| Berger M. — A Panoramic View of Riemannian Geometry | 55, 154, 155, 157, 177, 354, 423, 452, 735, 741, 742 |
| Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 311 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 20 |
| Milnor J. — Dynamics in One Complex Variable | 5-2, 14-4, E-2ff |
| Oprea J. — Differential Geometry and Its Applications | 205 |
| Cox D., Katz S. — Mirror symmetry and algebraic geometry | 310 |
| Friedman.R. — Algebraic Surfaces and Holomorphic Vector Bundles | 9 |
| Schenck H. — Computational algebraic geometry | 27, 140 |
| Connes A. — Noncommutative geometry | 1.5.$\beta$ |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 256 |
| Messer R. — Linear Algebra: Gateway to Mathematics | 340 |
| Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 66 |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 44, 501 |
| Silverman J.H. — The arithmetic of elliptic curves | 134, 136, 144 |
| Hicks N. — Notes on differential geometry | 108 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 167, 170 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 260, 261, 948, 1053, 1487, 1489, 1492, 1493, 1847 |
| Springer G. — Introduction to Riemann Surfaces | 143 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 188, 190 |
| Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 175 |
| Lueck W. — Basic introduction to surgery theory | 53 |
| Lefschetz S. — Algebraic topology | 104 |
| Rosenberg J. — Algebraic K-Theory and Its Applications | 1.7.9, remarks following 3.1.18 |
| Mimura M., Toda H. — Topology of Lie Groups, I and II | 258, 388, 392 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 123, 148, 198, 204 |
| Lee J.M. — Introduction to Topological Manifolds | 113, 142, 328 |
| Diestel R. — Graph theory | 363 |
| Johnsen T., Knutsen A.L. — K3 Projective Models in Scrolls | 10 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 361, 428 |
| Kirwan F. — An Introduction to Intersection Homology Theory | §6.1, §8.2 |
| Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 39 |
| Friedlander E.M. (ed.), Grayson D.R. (ed.) — Handbook of K-Theory | 598 |
| Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 142 |
| Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 53 |
| Okonek C., Schneider M., Spindler H. — Vector Bundles on Complex Projective Spaces | 359 |
| Hida H., Fulton W. (Ed) — Modular Forms and Galois Cohomology | 227, 231 |
| Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 224 |
| McCleary J. — A user's guide to spectral sequences | 14 |
| Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 234 |
| Hatcher A. — Algebraic Topology | 6, 86, 146 |
| Tevelev E. — Projectively dual varieties | 119 |
| Tarantello G. — Self-Dual Gauge Field Vortices: An Analytical Approach | 68 |
| Shafarevich I.R., Danilov V.I., Iskovskih V.A. — Algebraic Geometry II : Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences) | 27, 37, 44, 132, 137, 156 |
| Brown K.S. — Cohomology of Groups | 164, 243ff |
| Bergh J., Teillaud M. (Ed) — Effective Computational Geometry for Curves and Surfaces | 280 |
| Iseri H. — Smarandache Manifolds | 81, 82 |
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 62 |
| Petersen P. — Riemannian Geometry | 102 |
| Kono A., Tamaki D. — Generalized Cohomology | 91 |
| Lima E.L. — Fundamental Groups and Covering Spaces | 180 |
| Lang S. — Diophantine Geometry | 172 |
| Pugh C.C. — Real Mathematical Analysis | 45 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 14, 415 |
| Zoladek H. — Monodromy Group | 9, 38 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 58, 61, 63 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 776 |
| Vick J.W. — Homology theory. An introduction to algebraic topology | 63, 188 |
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 508 |
| Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 98 |
| Besse A.L. — Einstein Manifolds | 161, 325, 371, 400 |
| Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 626, 669 |
| Gompper G., Schick M. — Self-Assembling Amphiphilic Systems | 112, 113, 133 |
| Iwaniec H., Kowalski E. — Analytic number theory | 307 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 497 |
| Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 303, 304—305, 390—392, 394—396 |
| Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 499, 586 |
| Morita S. — Geometry of differential forms | 164 |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 92, 142 |
| Frampton P. — Dual Resonance Models and Superstrings | 495, 496 |
| Shimura G. — Introduction to Arithmetic Theory of Automorphic Functions | 18 |
| Morita Sh. — Geometry of Differential Forms | 164 |
| Yam T.Y. — Lectures on Modules and Rings | 203 |
| Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 119, 193 |
| Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 179 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 179—181, 190, 222 |
| Adams C.C. — The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots | 79 |
| Guggenheimer H.W. — Differential Geometry | 284 |
| Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces | 76 |
| Matveev S.V. — Lectures on Algebraic Topology | 48 |
| Visser M. — Lorentzian wormholes. From Einstein to Hawking | 64 |
| Luck W. — Transformation Groups and Algebraic K-Theory | 100, 227, 278, 360 |
| Barnette D. — Map Coloring Polyhedra and the Four Color Problem | 37, 43, 44, 50, 51 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 12.7.5.4, 12.10.9.2 |
| Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 359 |
| Granas A., Dugundji J. — Fixed Point Theory | 232, 405 |
| Grünbaum B. — Convex Polytopes | 138 |
| Weinberger S. — The topological classification of stratified spaces | 22 |
| Greenberg M.J., Harper J.R. — Algebraic Topology | 128 |
| Beardon A.F., Axler S. (Ed) — Iteration of Rational Functions | 83, 84 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 359 |
| Boroczky K. — Finite Packing and Covering | 338 |
| Clemens C.H. — Scrapbook of Complex Curve Theory | 55, 101, 145, 154 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 71, 107, 227, 274 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 69—71 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 609; see Part V |
| Oprea J. — Differential Geometry and Its Applications | 291, 292 |
| Anderson G.A., Granas A. — Fixed Point Theory | 232, 405 |
| Christensen S.M. — Quantum theory of gravity | 121, 334 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 14, 415 |
| Moise E.E. — Geometric topology in dimensions 2 and 3 | 147 |
| König S., Zimmermann A. — Derived Equivalences For Group Rings | 117 |
| Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 206 |
| Friedman R. — Algebraic Surfaces and Holomorphic Vector Bundles | 9 |
| Fuchs D., Tabachnikov S. — Mathematical omnibus: Thirty lectures on classical mathematics | 278 |
| Liu Y. — Introduction to combinatorial maps | 22 |
| Beardon A.F. — Iteration of rational functions | 83, 84 |
| Lang S. — Algebra | 769 |
| Kock J. — Frobenius Algebras and 2-D Topological Quantum Field Theories | 63 |
| Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 404 |
| Morita S. — Geometry of Differential Forms | 164 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 328, 415 |
| Aigner M. — Graph theory | 19 |
| Villareal R.H. — Monomial algebras | 141 |
| Adler R.J. — Geometry of random fields | 86—87, 89 |
| Mahapatra R.N. — Unification and Supersymmetry | 381 |
| Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 87, 241 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 399 |
| Spanier E.H. — Algebraic Topology | 172, 205 |
| van Lint J.H., Wilson R.M. — Course in Combinatorics | 439 |
| Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | 270—271 |
| Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 740, 765, 793 |
| Springer G. — Introduction to Riemann Surfaces | 143 |
| Kuratowski K. — Introduction To Set Theory & Topology | 254 |
| Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 102 |
| Vasil'ev V. A., Sossinski A. — Introduction to Topology | 68, 70 |
| Chaikin P., Lubensky T. — Principles of condensed matter physics | 626, 669 |
| Avramidi I.G. — Heat Kernel and Quantum Gravity | 107, 109 |
| Shick P.L. — Topology: Point-set and geometric | 210—211, 213 |
| Moskowitz M.A. — Adventures in mathematics | 97 |
| Dicks W., Dunwoody M.J. — Groups acting on graphs | 36, 105, 163 |
| Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 71, 107, 227, 274 |
| Hsiung C.-C. — A first course in differential geometry | 255, 256 |
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 62 |
| Frankel T. — The geometry of physics: an introduction | 423, 426 |
| Villarreal R.H. — Monomial Algebras | 141 |
| Mineev V.P. — Topologically stable defects and solutions in ordered media | 65 |
| Courant R. — Dirichlet's Principle, Confomal Mapping and Minimal Surfaces | 48, 141 |
| Bjorner A. — Oriented Matroids | 215 |
| Boissonnat J.D., Yvinec M. — Algorithmic Geometry | 258, 270 |
| Hartshorne R. — Algebraic Geometry | 230, 295, 360, 362, 366, 424 |
| Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 215 |
| Du D.-Z., Ko K.-I. — Theory of computational complexity | 165, 166 |
| Borówko M. (ed.) — Computational Methods in Surface and Colloid Science | 668, 669, 689, 696, 700, 701, 711—717, 731 |
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 604 |
| Vafa C., Zaslow E. — Mirror symmetry | 18, 45, 58, 191, 589, 610, 625, 626 |
| Arnold V.I. — Ordinary Differential Equations | 262, 267 |
| Greenberg M.J., Harper J.R. — Algebraic topology: a first course | 128 |
| Magurn B.A. — An algebraic introduction to k-theory | 100 |
| Stillwell J. — Mathematics and its history | 293—297, 300—304, 306, 307 |
| Lins S. — Gems, computers, and attractors for 3-manifolds | 105 |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 94 |
| Passman D.S. — The algebraic structure of group rings | 630, 631, 632, 635, 636 |
| Frankel T. — The geometry of physics: An introduction | 423, 426 |
| Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 184 |
| Maclane S. — Homology | 323 |
| Brown K. — Cohomology of Groups (Graduate Texts in Mathematics) | 164, 243ff |
| Santalo L., Kac M. — Integral geometry and geometric probability | 113 |
| Whyburn G.T. — American mathematical society colloquium publications. Volume XXVIII | 201 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 141—143 |
| Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 359 |
| Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35) | 27, 37, 44, 132, 137, 156 |
| Keith Devlin — Mathematics: The New Golden Age | 169, 232, 237, 252—254 |
| Rosenberg S. — The Laplacian on a Riemannian manifold | 49 |
| Neusel M.D. — Invariant Theory of Finite Groups | 178 |
| Jost J. — Bosonic Strings: A mathematical treatment | 28 |
| Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 80 |
| Whyburn G.T. — Topological analysis | 98 |