Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Iseri H. — Smarandache Manifolds
Iseri H. — Smarandache Manifolds



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Smarandache Manifolds

Автор: Iseri H.

Аннотация:

A Smarandache Geometry (1969) is a geometric space (i.e., one with points, lines) such that some "axiom" is false in at least two different ways, or is false and also sometimes true. Such axiom is said to be Smarandachely denied (or S-denied for short). In Smarandache geometry, the intent is to study non-uniformity, so we require it in a very general way. A manifold that supports a such geometry is called Smarandache manifold (or s-manifold for short). As a special case, in this book Dr. Howard Iseri studies the s-manifold formed by any collection of (equilateral) triangular disks joined together such that each edge is the identification of one edge each from two distinct disks and each vertex is the identification of one vertex each of five, six, or seven distinct disks.
Thus, as a particular case, Euclidean, Lobacevsky-Bolyai-Gauss, and Riemann geometries may be united altogether, in the same space, by certain Smarandache geometries. These last geometries can be partially Euclidean and partially Non-Euclidean.


Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 96

Добавлена в каталог: 16.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
2-gon      29
angle      25 43
Anti-geometry      67
Band space      75
bands      75
BETWEEN      35
Big s-projective plane      85
Big s-torus      85
Closed manifold      71
Completely between      35
Completely hyperbolic      45
Connect sum      83
Counter-projective geometry      67
Distance      16
Distance map      24 41
Elliptic      45
Elliptic cone-space      28
Elliptic star      12
Elliptic vertex      12
Embedding      87
Euclid's postulates      61
Euclidean      45
Euclidean band      75
Euclidean star      12
Euclidean vertex      12
Euler characteristic      81 82
Extremely hyperbolic      45
Finitely hyperbolic      45
Gauss Bonnet theorem      19 20
Gauss curvature      19
Genus      84
Hilbert's axioms      27 35 41
Hyperbolic      45
Hyperbolic cone-space      31
Hyperbolic star      12
Hyperbolic vertex      12
Impulse curvature      17 18 19
Interior band space      76
Lambert quadrilateral      23
Lift      79
Locally linear projections      73
Moebius band      77 81 84
Multiply aligned      27
n-aligned      27
n-hyperbolic      45
Non-geometry      61
Orientable      77 81
Paradoxist      53
parallel      21 26
Partially between      35
Pasch's axiom      39 78
q-congruent      43
Regularly hyperbolic point      45
Relative angle      21
Remote      27
Rigid embedding      87
s-circle      25 62
s-congruent      41
S-denied      6
s-Klein bottle      78
s-line      11
s-manifold      9 11
s-manifold with boundary      63
s-projective plane      76
s-proto-circle      24 62
s-right angle      63
s-segments      24
s-sphere      72
s-torus      77
Saccheri quadrilateral      23
SAS criterion      44
Smarandache geometry      6 53
Topological embeddings      87
Turning angles      18
Uniquely aligned      27
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте