Электронная библиотека Попечительского советамеханико-математического факультета Московского государственного университета
 Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум
 Авторизация Поиск по указателям
Iseri H. — Smarandache Manifolds
 Обсудите книгу на научном форуме Нашли опечатку?Выделите ее мышкой и нажмите Ctrl+Enter Название: Smarandache Manifolds Автор: Iseri H. Аннотация: A Smarandache Geometry (1969) is a geometric space (i.e., one with points, lines) such that some "axiom" is false in at least two different ways, or is false and also sometimes true. Such axiom is said to be Smarandachely denied (or S-denied for short). In Smarandache geometry, the intent is to study non-uniformity, so we require it in a very general way. A manifold that supports a such geometry is called Smarandache manifold (or s-manifold for short). As a special case, in this book Dr. Howard Iseri studies the s-manifold formed by any collection of (equilateral) triangular disks joined together such that each edge is the identification of one edge each from two distinct disks and each vertex is the identification of one vertex each of five, six, or seven distinct disks. Thus, as a particular case, Euclidean, Lobacevsky-Bolyai-Gauss, and Riemann geometries may be united altogether, in the same space, by certain Smarandache geometries. These last geometries can be partially Euclidean and partially Non-Euclidean. Язык: Рубрика: Математика/Геометрия и топология/ Статус предметного указателя: Готов указатель с номерами страниц ed2k: ed2k stats Год издания: 2002 Количество страниц: 96 Добавлена в каталог: 16.04.2005 Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
 2-gon      29 angle      25 43 Anti-geometry      67 Band space      75 bands      75 BETWEEN      35 Big s-projective plane      85 Big s-torus      85 Closed manifold      71 Completely between      35 Completely hyperbolic      45 Connect sum      83 Counter-projective geometry      67 Distance      16 Distance map      24 41 Elliptic      45 Elliptic cone-space      28 Elliptic star      12 Elliptic vertex      12 Embedding      87 Euclid's postulates      61 Euclidean      45 Euclidean band      75 Euclidean star      12 Euclidean vertex      12 Euler characteristic      81 82 Extremely hyperbolic      45 Finitely hyperbolic      45 Gauss Bonnet theorem      19 20 Gauss curvature      19 Genus      84 Hilbert's axioms      27 35 41 Hyperbolic      45 Hyperbolic cone-space      31 Hyperbolic star      12 Hyperbolic vertex      12 Impulse curvature      17 18 19 Interior band space      76 Lambert quadrilateral      23 Lift      79 Locally linear projections      73 Moebius band      77 81 84 Multiply aligned      27 n-aligned      27 n-hyperbolic      45 Non-geometry      61 Orientable      77 81 Paradoxist      53 parallel      21 26 Partially between      35 Pasch's axiom      39 78 q-congruent      43 Regularly hyperbolic point      45 Relative angle      21 Remote      27 Rigid embedding      87 s-circle      25 62 s-congruent      41 S-denied      6 s-Klein bottle      78 s-line      11 s-manifold      9 11 s-manifold with boundary      63 s-projective plane      76 s-proto-circle      24 62 s-right angle      63 s-segments      24 s-sphere      72 s-torus      77 Saccheri quadrilateral      23 SAS criterion      44 Smarandache geometry      6 53 Topological embeddings      87 Turning angles      18 Uniquely aligned      27
Реклама
 © Электронная библиотека попечительского совета мехмата МГУ, 2004-2021 | | О проекте