Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kirwan F. — An Introduction to Intersection Homology Theory
Kirwan F. — An Introduction to Intersection Homology Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An Introduction to Intersection Homology Theory

Автор: Kirwan F.

Аннотация:

A grad/research-level introduction to the power and beauty of intersection homology theory. Accessible to any mathematician with an interest in the topology of singular spaces. The emphasis is on introducing and explaining the main ideas. Difficult proofs of important theorems are omitted or only sketched. Covers algebraic topology, algebraic geometry, representation theory and differential equations.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1988

Количество страниц: 166

Добавлена в каталог: 06.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$L^2$-cohomology      §1.2 §4.2
$\mathcal{D}$-module      §7.2
$\mathscr{L}$-adic cohomology      §6.2 §6.3
Betti numbers      §6.1
Bore! subgroup      §8.2
Borel — Moore homology      §2.3
Boundary map      §2.2 §3.4 §5.1
Bounded complex      §5.4
Canonical filtration      §5.5
Cech cohomology      §2.5 §6.3
Chain      §2.1 §2.2 §3.4 §5.1
Change of base field      §6.2 §6.4
Characteristic variety      §7.4 §7.5 §7.6
Closed support      §2.3
Coherent sheaf of modules      §7.3
Cohomology      §2.2 §2.5 §2.6
Cohomology sheaf      §2.6
Commutator      §7.2
Compact support      §2.3 §2.6 §3.10
Comparison theorem      §6.2 §6.4
Complex of sheaves      §2.6
Cone      §3.8 §4.1
Conical subvariety      §7.4 §7.10
Connection      §7.9
Conormal bundle      §7.10
Constant sheaf      §2.4 §6.3
Constructible complex      §5.4
Critical point      §1.3
Cup product      §2.7 §6.5
De Rham cohomology      §1.2
de Rham complex      §7.3 §7.11
Decomposition theorem      §6.5
Deligne's construction      §5.5 §6.4
Derived category      §7.11
Derived functor      §2.6 §7.8
Differential form      §1.2
Differential operator      §7.2
Differential system      §7.2
Equivalence of categories      §7.8
Etale cohomology      §6.3
Etale morphism      §6.3
Etale topology      §6.3
Euler characteristic      §6.1 §8.2
Exact      §2.6
Excision theorem      §3.8
Face      §2.1 §2.2
Fibration      §6.5
Filtered complex      §5.3
Filtration      §3.2
Fine sheaf      §5.2
Flag manifold      §8.2
Frobenius map      §6.2 §6.4
Fubini-Study metric      §1.2
Fuchsian type      §7.1
Functional equation      §6.1 §6.2
functor      §2.2 §7.8
Generalised quasi-isomorphism      §5.3
Generic hyperplane      §1.1 §3.10
Germ      §2.4
Good filtration      §7.4
Graded module      §7.4
Graded ring      §7.4
Grassmann variety      §6.5
Grothendieck group      §8.1
Hard Lefschetz theorem      §1.1 §3.10
Hecke algebra      §8.4
hessian      §1.3
Highest weight      §8.1
Hodge decomposition      §1.1 §3.10
Hodge signature theorem      §1.1
Holonomic differential system      §7.5 §7.8 §7.9
Hypercohomology      §5.3 §6.4
Hypergeometric equation      §7.1
Injective resolution      §2.6 §7.8
Intersection chain      §3.4 §5.1
Involutive      §7.5
Irreducible variety      §3.1
Isolated conical singularities      §4.1 §4.3
Isolated singularities      §3.5
Kazhdan — Lusztig conjecture      §8.4
Kazhdan — Lusztig polynomial      §8.4
Ktlnneth theorem      §3.8
Lagrangian subvariety      §7.5 §7.10
Lefschetz fixed point formula      §6.4
Lefschetz hyperplane theorem      §1.1 §3.10
Lie algebra      §8.1
Lie derivative      §7.7
Link      §3.8
Local coefficients      §3.9 §5.1
Local system      §3.9 §5.1 §7.9
Locally finite chain      §2.3
monodromy      §7.1
Morse function      §1.3
Morse inequalities      §1.3
Normalisation      §3.6
Order of differential operator      §7.4
Orientation      §2.1 §2.4
Partition of unity      §5.2
Perverse sheaf      §7.10
Perversity      §3.4
Piecewise linear chain      §2.1
Poincare duality      §1.1 §3.10 §6.2 §6.4
Poisson bracket      §7.5
Positive root      §8.1
Presheaf      §2.4
Primitive cohomology      §1.1
Principal symbol      §7.4
Projective morphism      §6.5
Pseudomanifold      §3.3
Punctured cone      §4.1 §4.2
Quasi-isometric      §4.1
Quasi-isomorphic      §5.3
Quasi-projective variety      §3.1
Quotient sheaf      §2.4
refinement      §2.1
Regular function      §7.3
Regular singularities      §7.1 §7.9
Relative (intersection) cohomology      §2.7 §3.7
Resolution of singularities      §6.5
Restriction map      §2.4
Restriction of fl-module      §7.8
Riemann hypothesis      §6.1 §6.2 §6.4 §8.3
Riemann — Hilbert correspondence      §7.1 §7.3 §7.10
Riemann — Hilbert problem      §7.1
Schubert variety      §6.5
Section      §2.4
Sheaf      §2.4 §6.3
Sheaf associated to presheaf      §2.4
simplex      §2.1 §2.2
Simplicial complex      §2.1
Simplicial homology      §2.1
Singular homology      §2.2
Small resolution      §6.5
Solution of differential system      §7.2
Spectral sequence      §5.3 §6.5
Square-integrable i-form      §1.2
Stalk      §2.4
Subordinate      §5.2
Support      §2.1 §2.6 §3.4 §5.1
Symbol      §7.4
Symplectic form      §7.5
Triangulation      §2.1
Truncated complex      §5.5
Verma module      §8.1
Vertex      §2.1
Weil Conjectures      §6.1
Weyl group      §8.1
Whitney stratification      §3.2
Zeta function      §6.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте