Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 97 |
Bell W.W. — Special Functions for scientists and engineers | 168 |
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities. | 51 |
Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 509, 510, 773, see orthogonal polynomials |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 153, 154 |
Andrews G., Askey R., Roy R. — Special Functions | 283, 288, 418 |
Lee J.S., Miller L.E. — CDMA systems engineering handbook | 943—44 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 317.D, App. A, Table 20.VI |
Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 509, 510, 773; see “Orthogonal polynomials” |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 784 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 784 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 156, 162 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 256, 318 |
Messer R. — Linear Algebra: Gateway to Mathematics | 171 |
Handscomb D.C. — Methods of numerical approximation | 198 |
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 244p |
Olver F.W.J. — Asymptotics and Special Functions | 48—50, 52 |
Abell M.L., Braselton J.P. — Mathematica by Example | 244 |
Weinstock R. — Calculus of variations with applications to physics & engineering | 128—129, 274 |
Liboff R. — Kinetic Theory | 204, 547 |
Helgaker T., Jorgensen P., Olsen J. — Molecular Electronic-Structure Theory. Part 2 | 219 (see also “Orthogonal polynomials”) |
Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | III, 219 147 |
Baker G.A., Graves-Morris P. — Pade approximants (vol. 2) | I: 186 |
Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 81 |
Leach A.R. — Molecular Modelling Principles and Applications | 31, 55 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 61 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 130, 255 |
Lorentzen L., Waadeland — Continued fractions and applications | 443 |
Baker G.A., Graves-Morris P. — Pade approximants (vol. 1) | I:186 |
Bogachev V.I. — Measure Theory Vol.1 | 304 |
Roman S. — The Umbral Calculus | 11, 108—113, 120, 133—134, 137, 140, 151, 158—159 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 57, 66, 130 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 957, 982 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 170 |
Comtet L. — Advanced Combinatorics. The Art of Finite and Infinate Expansions | 50 |
Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 145 |
Greiner W. — Quantum mechanics. An introduction | 162 |
Jackson D. — Fourier Series and Orthogonal Polynomials | 184—190, 226—227 |
Rainville E.D. — Special Functions | 130, 134—136, 146, 170—171, 200—217, 231, 235, 237, 243—244, 246—253, 281, 291—292, 303—304 |
Khuri A.I. — Advanced calculus with applications in statistics | 451 |
Johnston R. — Numerical methods, a software approach | 211 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 239 |
Buckingham R.A. — Numerical Methods | 326 |
Gasper G., Rahman M. — Basic hypergeometric series | 4 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | V 58 44 |
Ito K. — Encyclopedic Dictionary of Mathematics | 317.D, App. A, Table 20.VI |
Galindo A., Pascual P. — Quantum Mechanics Two | I 308 |
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators | 63 |
Lay D.C. — Linear Algebra And Its Applications | 234 |
Prigogine I. — Nonequilibrium statistical mechanics | 75, 76, 279, 286 |
Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | 67 |
Friedman M., Kandel A. — Introduction to pattern recognition | 52 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 97 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 21, 393; also see “Classical orthogonal polynomials” |
Weir A.J. — Lebesgue Integration and Measure | 200 |
Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures | 95, 172, 184, 214 |
Bogachev V.I. — Measure Theory Vol.2 | I: 304 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 13.2 |
Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 142, 305 |
Erdelyi A. — Higher Transcendental Functions, Vol. 3 | see “Polynomials” |
Galindo A., Pascual P. — Quantum Mechanics One | 308 |
Englert B.G. (Ed) — Quantum Mechanics | 282 |
Cercignani C. — Theory and Application of the Boltzman Equation | 125, 149, 151, 153, 154, 155, 183 |
Shohat J. — The problem of moments | 92, 93, 122 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 49 |
Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 164, 188 ff., 226 |
Pomraning G.C. — The equations of radiation hydrodynamics | 207 |
Hamming R.W. — Numerical methods for scientists and engineers | 457 |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 509 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 153, 154 |
Wong K. — Asymptotic Approximations of Integrals | 222, 372, 396, 421 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 239 |
Mehta M.L. — Random Matrices | 356 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 50, 199, 340, 388 |
Wawrzynczyk A. — Group representations and special functions | 664 |
Kreyszig E. — Advanced engineering mathematics | 209, 257 |
Charalambides C.A. — Enumerative Combinatorics | 449, 452 |
Bates D.R. — Quantum Theory | 111, 130, 141 |
Davies B. — Integral Transforms and Their Applications | 210, 334, 338 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 54 |
Weissbluth M. — Atoms and Molecules | 692 |
Conway J.B. — A Course in Functional Analysis | 18 |
Cotterill R.M.J. — Biophysics: An Introduction | 359 |
Sternberg S. — Group Theory and Physics | 193 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 276 |
Widder D.V. — The Laplace transform | 168 |
Baker G.A. — Essentials of Padé Approximants in Theoretical Physics | (see Orthogonal polynomials) |
Bayin S.S. — Mathematical Methods in Science and Engineering | 46 |
Rektorys K. — Survey of applicable mathematics | 728-9 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 183 |
Messiah A. — Quantum mechanics. Volume 1 | 416, 419, 483 |
Nouredine Z. — Quantum Mechanics: Concepts and Applications | 340 |
Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 75, 76, 279, 286 |
Mott N.F., Sneddon I.N. — Wave Mechanics and Its Applications | 379 |
Klauder J.R., Sudarshan E.C.G. — Fundamentals of Quantum Optics | 25, 233 |
Kreyszig E. — Introductory functional analysis with applications | 184 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 93—97, 329—330, 342—343 |
Rainville E. D. — Intermediate Course in Differential Equations | 189, 191, 209 |
Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 36, 48 |
Papoulis A. — The Fourier Integral and Its Applications | 203, 236 |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 56, 240 |
Morse P.M. — Methods of theoretical physics | 784 |
Kemble E. C. — The fundamental principles of quantum mechanics | 160, 585 |
McBride E.B. — Obtaining Generating Functions | 25—42 |
Bransden B., Joachain C. — Physics of Atoms and Molecules | 136—8 |
Bellman R. — Perturbation Techniques in Mathematics, Physics, and Engineering | 7 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 728—729 |
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities | 51 |
Wilf H.S., Zeilbercer D., Petkovšek M. — A=B | 61 |
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 15 |
Zhang S., Jin J. — Computation of Special Functions | 18—20 |
Leighton R.B. — Principles of Modern Physics | 174 |
Hildebrand F.B. — Advanced Calculus for Applications | 82 (6), 142, 176 (17) |
Wong R. — Asymptotic approximations of integrals | 222, 372, 396, 421 |
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 335 |
Jeffreys H. — Methods Of Mathematical Physics | 619 |
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 87 |
Greiner W. — Relativistic quantum mechanics. Wave equations | 64, 263 |
Stacey W. — Nuclear reactor physics | 477 |
Bates D.R. — Quantum Theory. I. Elements | 111, 130, 141 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 267 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 712, II 74 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 230, 679 |
Sakurai J.J. — Modern quantum mechanics | 454 |
Constantinescu F., Magyari E. — Problems in quantum mechanics | 399 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 662 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 221 |
Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 509, 510, 773, see "Orthogonal polynomials" |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 509 |
Davies B. — Integral Transforms and their Applications | 210, 334, 338 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 207, 212 |
Daniels R.W. — Introduction to numerical methods and optimization techniques | 138 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 127, 160 |
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 9, 16, 71, 74, 77, 100, 125, 200, 201, 220, 242, 380, 381, 403, 409, 420, 430, 434, 455, 467 |
Helander P., Sigmar D.J. — Collisional Transport in Magnetized Plasmas | 74 |
Liboff R.L. — Introductory quantum mechanics | 397 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 57 |