Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 11, 208 |
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç | 527 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 786 |
Dummit D.S., Foote R.M. — Abstract algebra | 267, 856 |
Lang S. — Algebra | 443 |
Dodge C.W. — Sets, logic & numbers | 13, 87, 121, 240 |
Brown W.C. — Matrices over communicative rings | 23 |
Fishman G.S. — Monte Carlo: concepts, algorithms, and applications | 402 |
Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 37, 50 |
Saad Y. — Numerical Methods for Large Eigenvalue Problems | 11, |
MacLane S. — Categories for the working mathematician | 20 |
Saad Y. — Iterative Methods for Sparse Linear Systems | 10, 33 |
Hille E. — Ordinary Differential Equations in the complex domain | 242, 367 |
Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 104 |
Kneebone G.T. — Mathematical Logic and the Foundation of Mathematics | 35 |
Van Oystaeyen F. — Algebraic geometry for associative algebras | 247 |
Meyer C.D. — Matrix analysis and applied linear algebra | 113, 258, 339, 386 |
Becker T., Weispfenning V. — Groebner bases and commutative algebra | 283 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 99 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 786 |
Pareigis B. — Categories and functors | 190 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 99 I |
Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 47, 52 |
Rosenberg J. — Algebraic K-Theory and Its Applications | beginning of 1.2 |
Reid M. — Undergraduate commutative algebra | 2, 4, 28 |
Stevens W.R. — Unix network programming (volume 2) | 393—395, 422—423 |
Watkins D. — Fundamentals of matrix computations | 195 |
Dodge C.W. — Foundations of algebra and analysis | 13, 87, 121, 240 |
Dummit D.S., Foote R.M. — Abstract Algebra | 269, 333, 349, 592, 604, 606 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 69n, 392 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 324 |
Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 89 |
Hamilton J.D. — Time Series Analysis | 201 |
Straubing H. — Finite automata, format logic, and circuit complexity | 6 |
Lawvere F.W., Rosebrugh R. — Sets for Mathematics | 189, 217 |
Casella G. — Statistical Design | 38 (see also “Matrix”) |
Grillet P.A. — Abstract Algebra | 370, 376, 377 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 18, 81, 87, 93, 137, 343 |
Jones W.B., Thron W.J. — Continued fractions: Analytic theory and applications | 69 |
Halmos P.R. — Hilbert Space Problem Book | 208, 225 |
Le Bruyn L. — Noncommutative geometry | 23 |
Blessenohl D., Schocker M. — Noncommutative Character Theory of the Symmetric Group | 129 |
Winter M. — Goguen Categories: A Categorical Approach to L-Fuzzy Relations | 9, 11 |
Brünjes L. — Forms of Fermat Equations and Their Zeta Functions | 167—169, 171, 177, 218, 222—224 |
Heesterman A.R.G. — Matrices and Their Roots: A Textbook of Matrix Algebra/With Disk | 229, 232, 233, 234, 268, 269, 300, 366, 380 |
Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 10 |
Lam T.Y. — A first course in noncommutative ring theory | 24, 145, $\S$21 |
Blackadar B. — K-theory for operator algebras | 4.1.1 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 200 |
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 85 |
James I.M. — Topological and Uniform Spaces | 12 |
Burris S., Sankappanavar H.P. — A Course in Universal Algebra | 21 |
Brown K.S. — Cohomology of Groups | 27, 234, 238 |
Surowski D. — Workbook in higher algebra | 149 |
Sketches — A supplement for Category theory for computing science | 20 |
Haran S.M.J. — Arithmetical Investigations: Representation Theory, Orthogonal Polynomials, and Quantum Interpolations | 139 |
Cao Z.-Q., Kim K.H., Roush F.W. — Incline algebra and applications | 41, 47 |
Barr M., Wells C. — Toposes, Triples and Theories | 195 |
Schenk C.A., Schueller G.I. — Uncertainty Assessment of Large Finite Element Systems | 13 |
Higgins P. — Techniques of Semigroup Theory | 1 |
Neher E. — Jordan Triple Systems by the Grid Approach | 8 |
Thaller B. — Visual quantum mechanics | 100 |
Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | III 30 |
Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 185,196 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 52, 60 |
Waterhouse W.C. — Introduction to Affine Group Schemes | 19 |
Hein J.L. — Discrete Mathematics | 525 |
Brown K.S. — Buildings | 66 |
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 539, 694 |
Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 66 |
Waterhouse W.C. — Introduction to Affine Group Schemes, Vol. 66 | 19 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 205 |
Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications) | 184f,243 |
Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 92 |
Howie J.M. (ed.) — An Introduction to Semigroup Theory | 5 |
Takezawa K. — Introduction to Nonparametric Regression | 40, 57, 58, 78, 98, 260, 264, 266, 269 |
Bichteler K. — Integration - a functional approach | 5 |
Borceux F., Janelidze G. — Galois Theories | 72 |
Halmos P.R. — Finite-Dimensional Vector Spaces | 73 |
Blyth T.S., Robertson E.F. — Further Linear Algebra | 29 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 98 |
Borceux F. — Handbook of Categorical Algebra 3 | I.271 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 11, 208 |
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 517, 636 |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 299, 310 |
Bourbaki N. — Algebra I: Chapters 1-3 | I, § 1, no. 4 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 2.22 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 432 |
Hein J.L. — Discrete Structures, Logic, and Computability | 519 |
Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory | 11 |
Kirillov A.A. — Elements of the Theory of Representations | 122 |
O'Raifeartaigh L. — Group Structure of Gauge Theories | 133—134 |
Saad Y. — Iterative methods for sparse linear systems | 9, 32 |
Johnstone P.T. — Sketches of an Elephant: A Topos Theory Compendium | A1.1.8 |
Radjavi H., Rosenthal P. — Simultaneous Triangularization | 138 |
Silvester J.R. — Introduction to Algebraic K-Theory | 52 |
Draxl P.K. — Skew fields | 14 |
O'Donnell C.J. — Incidence Algebras | 86, 260, 261, 263, 266 270, 272, 280, 306 |
Hu S.-T. — Elements of general topology | 174, 181 |
Eddington A.S. — Philosophy of Physical Science | 162, 202 |
Miller W. — Symmetry Groups and Their Applications | 97 |
Stevens W.R. — Unix Network Programming. Interprocess Communications | 393 — 395, 422 — 423 |
Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 73, 80, 131 |
Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 10 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 1089 |
Petrich M. — Inverse semigroups | 13, 612 |
Kozen D.C. — The Design And Analysis Of Algorithms | 30 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 267 |
Nastasescu C., Oystaeyen F.V. — Dimensions of ring theory | 46 |
Borceux F. — Handbook of Categorical Algebra: Categories and Structures, Vol. 2 | I.290 |
Berberian S.K. — Baer *-Rings | 3, 8, 9, 11, 18, 96 |
Nagata M. — Field Theory | 51 |
Wawrzynczyk A. — Group representations and special functions | 200 |
Faraut J., Korányi A. — Analysis on symmetric cones | 43 |
Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 13, 69 |
Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras | 12, 18, 20, 28—43 |
Rosenfeld B. — Geometry of Lie Groups | 30 |
Conway J.B. — A Course in Functional Analysis | 37, 46 |
Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 376 |
Birknoff — Lattice Theory | 18, 154 |
Curtis M.L. — Abstract Linear Algebra | 77, 97 |
Karpilovsky G. — Unit groups of classical rings | 2 |
Petersen K.E. — Ergodic theory | 158 |
Bell E.T. — The Development of Mathematics | 249 |
Rutherford D.E. — Substitutional Analysis | 81 |
Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 41, 110 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 113, 258, 339, 386 |
Perrin D., Pin J.-E. — Infinite Words: Automata, Semigroups, Logic abd Games | 441 |
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 80, 101 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 256 |
Bhaskara Rao K.P.S. — Theory of generalized inverses over commutative rings | 1 |
Lang S. — Algebra | 443 |
Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras | 324 |
Marks R.J.II. — The Joy of Fourier | 528, 530, 538, 624, 648, 656, 665, 736 |
Kreyszig E. — Introductory functional analysis with applications | 148, 385 |
Hu S.-T. — Introduction to contemporary mathematics | 95 |
Borceux F. — Handbook of Categorical Algebra, Volume 1: Basic Category Theory | 271 |
Knus M.-A. — Quadratic and hermitian forms over rings | 83 |
de Graaf W.A. — Lie Algebras: Theory and Algorithms | 309 |
Reiner I. — Integral Representations | 178 |
Pearson R.K. — Mining imperfect data: dealing with contamination and incomplete records | 9, 60, 62—66, 118, 120 |
Bruck R.H. — A survey of binary systems | 25, 35, 44 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 6.3. 85 |
Loomis L.H. — An introduction to abstract harmonic analysis | 101 |
Valette A. — Introduction to the Baum-Connes Conjecture | 11, 59 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 14 |
Kaplansky I. — Rings of operators | 2 |
Lounesto P. — Clifford algebras and spinors | 52, 60 |
Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 220 |
Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 275 |
Loomis L.H., Sternberg S. — Advanced calculus | 59 |
Lander E.S. — Symmetric design: an algebraic approach | 276 |
Giambruno A., Zaicev M. — Polynomial Identities and Asymptotic Methods | 45 |
Dauns J. — A Concrete Approach to Division Rings | 98, 110 |
Boerner H. — Representations of Groups | 7, 58 |
Gabriel P., Roiter A.V., Kostrikin A.I. (ed.) — Encyclopaedia of Mathematical Sciences. Volume 73: algebra VIII | 17 |
Hartshorne R. — Algebraic Geometry | 82 |
Kneebone G.T. — Mathematical Logic and the Foundations of Mathematics: An Introductory Survey | 22, 171 |
Ben-Ari M — Mathematical Logic for Computer Science | 22, 171 |
Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 121 |
Dydak J., Segal J. — Shape Theory: An Introduction | 17 |
Monk J.D. (ed.) — Handbook of Boolean Algebras, Vol. 1 | 19, 20 |
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics | 21, 251, 274, 284, 293, 577 |
Karpilovsky G. — The Jacobson radical of classical rings | 1 |
Dieudonne J. — Linear Algebra and Geometry. | 3.2, Ex. 1 |
Herstein I.N. — Topics in algebra | 268 |
Niven I., Zuckerman H.S. — An Introduction to the Theory of Numbers | 63 |
Zeidler E. — Oxford User's Guide to Mathematics | 719 |
Horn R.A. — Matrix Analysis | 37, 148, 311 |
van Lint J.H. — Coding Theory | 49, 82 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 166 |
Hamilton J.D. — Time Series Analysis | 201 |
Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 205 |
James I.M. (ed.) — Topological and Uniform Spaces | 12 |
Magurn B.A. — An algebraic introduction to k-theory | 43, 268 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 341—343 |
Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 47, 52 |
Godsil C. — Algebraic Combinatorics (Chapman Hall Crc Mathematics Series) | 319 |
Brown K. — Cohomology of Groups (Graduate Texts in Mathematics) | 27, 234, 238 |
Marcus M., Minc H. — Introduction to Linear Algebra | 165 |
Gill A. — Applied Algebra for the Computer Sciences | 99, 267 |
Rautenberg W. — A Concise Introduction to Mathematical Logic (Universitext) | 37 |
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 159 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 193 |
Neusel M.D. — Invariant Theory of Finite Groups | 294 |
Steen S. — Mathematical Logic | 47, 52 |
Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 275 |